Proceedings
Authors
| Filter results3 paper(s) found. |
|---|
1. The Most Sensitive Growth Stage To Quantify Nitrogen Stress In Sugarcane Using Active Crop Canopy SensorThe use of sensors that allow the application of nitrogen fertilizer at variable rate has been widely used by researchers in many agricultural crops, but without success in sugarcane, probably due to the difficulty of diagnosing the nutritional status of the crop for nitrogen (N). Active crop canopy sensors are based on the principle that the spectral reflectance curve of the leaves are modified by N level. Researchers in USA indicated that in-season N stress in corn can be detected... S.G. Castro, O.T. Kolln, H.S. Nakao, H.C. Franco, O. Braunbeck, P.S. Graziano magalhães, G.M. Sanches |
2. A Generative Adversarial Network-based Method for High Fidelity Synthetic Data AugmentationDigital Agriculture has led to new phenotyping methods that use artificial intelligence and machine learning solutions on image and video data collected from lab, greenhouse, and field environments. The availability of accurately annotated image and video data remains a bottleneck for developing most machine learning and deep learning models. Typically, deep learning models require thousands of unique samples to accurately learn a given task. However, manual annotation of a large dataset will... S. Sridharan, S. Sornapudi, Q. Hu, S. Kumpatla, J. Bier |
3. Limitations of Yield Monitor Data to Support Field-scale ResearchPrecision agriculture adoption on farms continues to grow globally on farms. Today, yield monitors have become standard technologies on grain, cotton and sugarcane harvesters. In recent years, we have seen industry and even academics leveraging the adoption of precision agriculture technologies to conduct field-scale, on-farm research. Industry has been a primary driver of the increase in on-farm research globally through the development of software to support on-farm research. ... J.P. Fulton, S.A. Shearer, A. Gauci, A. Lindsey, D. Barker, E. Hawkins |