Proceedings

Find matching any: Reset
Murdoch, A
Muller, O
Melo, D.D
Cutulle, M
Moon, H
Mizgirev, A
Cui, B
Federizzi , L.C
Dorado, J
Magalhaes, P.S
Mohamed, M.M
Carcedo, A
Mennuti, D
Cabrera Dengra, M
Molina Cyrineu, I
Marchant, B
Kechadi, M
Pack, C
Kim, J
Dima, C
Bainard, L
Andales, A.A
Hunt, E
Freitas, A.A
Kempenaar, C
Costa, C.C
Add filter to result:
Authors
Garcia, A.H
Rodrigues Júnior, F.H
Bastos, A.H
Magalhaes, P.S
Silva, M.J
Song, X
Zhao, C
Chen, L
Huang, W
Cui, B
Bortolon, L
Borghi, E
Luchiari Junior, A
Bortolon, E.S
Freitas, A.A
Inamasu, R.Y
Avanzi, J.C
Sankaran, S
Ehsani, R
Mishra, A
Dima, C
Horneck, D.A
Gadler, D.J
Bruce, A.E
Turner, R.W
Spinelli, C.B
Brungardt, J.J
Hamm, P.B
Hunt, E
Peña, J.M
Torres-Sanchez, J
de Castro, A.I
Dorado, J
Lopez-Granados, F
Anselmi, A.A
Federizzi , L.C
Bredemeier, C
Molin, J.P
Burnquist, H.L
Costa, C.C
Muller, O
Cendrero Mateo, M.P
Albrecht, H
Pinto, F
Mueller-Linow, M
Pieruschka, R
Schurr, U
Rascher, U
Schickling, A
Keller, B
Jeon, C
Kim, H
Han, X
Moon, H
Gebbers, R
Dworak, V
Mahns, B
Weltzien, C
Büchele, D
Gornushkin, I
Mailwald, M
Ostermann, M
Rühlmann, M
Schmid, T
Maiwald, M
Sumpf, B
Rühlmann, J
Bourouah, M
Scheithauer, H
Heil, K
Heggemann, T
Leenen, M
Pätzold, S
Welp, G
Chudy, T
Mizgirev, A
Wagner, P
Beitz, T
Kumke, M
Riebe, D
Kersebaum, C
Wallor, E
Hunt, E
Rondon, S.I
Bruce, A.E
Turner, R.W
Brungardt, J.J
Sung, N
Chung, S
Kim, Y
han, K
Choi, J
Kim, J
Cho, Y
Jang, S
Ahuja, L.R
Saseendran, S.A
Ma, L
Nielsen, D.C
Trout, T.J
Andales, A.A
Hansen, N.C
Ngo, V.M
Le-Khac, N
Kechadi, M
Kindred, D
Sylvester-Bradley, R
Clarke, S
Roques, S
Hatley, D
Marchant, B
Tagarakis, A.C
van Evert, F
Milic, D
Crnojevic, V
Crnojevic-Bengin, V
Kempenaar, C
Ljubicic, N
Hodge, K
Bainard, L
Smith, A
Akhter, F
Muller, O
Keller, B
Zimmermanm, L
Jedmowski, C
Pingle, V
Acebron, K
Zendonadi, N
Steier, A
Pieruschka, R
Schurr, U
Rascher, U
Kraska, T
Mohamed, M.M
Zaman, Q
Esau, T
Farooque, A
Cabrera Dengra, M
Ferraz Pueyo, C
Pajuelo Madrigal, V
Moreno Heras, L
Inunciaga Leston, G
Fortes, R
Karampoiki, M
Todman, L
Mahmood, S
Murdoch, A
Paraforos, D
Hammond, J
Ranieri, E
Maja, J.J
Abenina, M
Cutulle, M
Melgar, J
Liu, H
Capolicchio, J
Mennuti, D
Milani, I
Fortunato, M
Petix, R
Reyes Gonzalez, J
Sunkevic, M
Amaral, L.R
Oldoni, H
Melo, D.D
Rosin, N.A
Alves, M.R
Demattê, J.M
Gummi, S
Alahe, M
Chang, Y
Pack, C
Carcedo, A
Antunes de Almeida, L.F
Horbe, T
Corassa, G
Pott, L.P
Ciampitti, I
Hintz, G.D
Hefley, T
Schwalbert, R.A
Prasad, V
Lingua, L.N
Carcedo, A
Gimenez, V
Maddonni, G
Ciampitti, I
Rodrigues Alves Franchi, M
Molina Cyrineu, I
Kagami Taira, F
Hunhoff, L
Gimenez, L.M
Topics
Sensor Application in Managing In-season Crop Variability
Spatial Variability in Crop, Soil and Natural Resources
Profitability, Sustainability and Adoption
Precision Horticulture
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Profitability, Sustainability and Adoption
Precision Agriculture and Climate Change
Engineering Technologies and Advances
Precision Nutrient Management
Remote Sensing Applications in Precision Agriculture
Modelling and Geo-Statistics
Big Data, Data Mining and Deep Learning
On Farm Experimentation with Site-Specific Technologies
Small Holders and Precision Agriculture
Applications of Unmanned Aerial Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Profitability and Success Stories in Precision Agriculture
Big Data, Data Mining and Deep Learning
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Precision Agriculture and Global Food Security
Geospatial Data
Robotics and Automation with Row and Horticultural Crops
Weather and Models for Precision Agriculture
Data Analytics for Production Ag
On Farm Experimentation with Site-Specific Technologies
Type
Poster
Oral
Year
2012
2010
2014
2016
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results29 paper(s) found.

1. Development Of Ground-based Sensor System For Automated Agricultural Vehicle To Detect Diseases In Citrus Plantations

An integrated USDA-funded project involving Carnegie Mellon University, University of Florida, Cornell University and John Deere is ongoing, to develop an autonomous tractors for sustainable specialty crop farming. The research teams have come together to develop an automated system for detecting plant stress, estimating yields, and reducing chemical usage through precision spraying for specialty crops. The goals of the automation process are to reduce the tractor-related labor costs, reduce... S. Sankaran, R. Ehsani, A. Mishra, C. Dima

2. Assembly of an Ultrasound Sensors System for Mapping of Sugar Cane Height

In Precision Agriculture, the use of sensors provides faster data collection on plant, soil, and climate, allowing collecting larger sample sets with better information quality. The objective of this study was the development of a system for plant height measurement in order to mapping of sugar cane crop, so that regions with plant growth variation and grow failures could be identified... A.H. Garcia, F.H. Rodrigues júnior, A.H. Bastos, P.S. Magalhaes, M.J. Silva

3. Winter Wheat Growth Uniformity Monitoring Through Remote Sensed Images

  ... X. Song, C. Zhao, L. Chen, W. Huang, B. Cui

4. Adoption and Tendencies of Precision Agriculture Technologies in the Tocantins State, Brazil

Although precision agriculture is widely used throughout Brazilian crop production, it has not been used to increase the efficiency use of agricultural inputs. Besides, technologies available have not been... L. Bortolon, E. Borghi, A. Luchiari junior, E.S. Bortolon, A.A. Freitas, R.Y. Inamasu, J.C. Avanzi

5. Detection Of Nitrogen Deficiency In Potatoes Using Small Unmanned Aircraft Systems

  Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. A nitrogen rate experiment was established in 2013 with ‘Ranger Russet’ potatoes by applying four rates of nitrogen fertilizer (112, 224, 337, and 449 kg N/ha) in a randomized block design with 3 replicates. A Tetracam Hawkeye sUAS and Agricultural Digital Camera Lite sensor were used to collect imagery with near-infrared... D.A. Horneck, D.J. Gadler, A.E. Bruce, R.W. Turner, C.B. Spinelli, J.J. Brungardt, P.B. Hamm, E. Hunt

6. The TOAS Project: UAV Technology For Optimizing Herbicide Applications In Weed-Crop Systems

Site-specific weed management refers to the application of customised control treatments, mainly herbicide, only where weeds are located within the crop-field. In this context, the TOAS project is being developed under the financial support of the European Commission with the main objective of generating georeferenced weed infestation maps of certain herbaceous (corn and sunflower) and permanent woody crops (poplar and olive orchards) by using aerial images collected by an unmanned aerial... J.M. Peña, J. Torres-sanchez, A.I. De castro, J. Dorado, F. Lopez-granados

7. Factors Related To Adoption Of Precision Agriculture Technologies In Southern Brazil

The adoption of technologies which allow the increase of food production with improving quality in addition to reduce the foot prints in the environment is important for agribusiness development. Precision Agriculture (PA) stands out as an option to aid the achievement of these goals. Brazil plays an important role to supply agricultural products and to demand technologies. However, research has focused on technical and economic implementation of PA technologies. Therefore, more information... A.A. Anselmi, L.C. Federizzi , C. Bredemeier, J.P. Molin

8. Conditioning Factors For Decision-Making Regarding Precision Agriculture Techniques Usage

The eventual goal of using the techniques of precision agriculture (described as inputs applied at varied rates) is to get one of the following results: (a) lowering cost by reducing inputs, (b) decreasing the pollution of water, soil and the atmosphere and (c) increasing agricultural productivity by the more efficient use of inputs. However, studies on these techniques do not reach similar conclusions. This could be expected, since the effectiveness of these techniques would depend... H.L. Burnquist, C.C. Costa

9. Field Phenotyping Infrastructure in a Future World - Quantifying Information on Plant Structure and Function for Precision Agriculture and Climate Change

Phenotyping in the field is an essential step in the phenotyping chain. Phenotyping begins in the well-defined, controlled conditions in laboratories and greenhouses and extends to heterogeneous, fluctuating environments in the field. Field measurements represent a significant reference point for the relevance of the laboratory and greenhouse approaches and an important source of information on potential mechanisms and constraints for plant performance tested at controlled conditions. In this... O. Muller, M.P. Cendrero mateo, H. Albrecht, F. Pinto, M. Mueller-linow, R. Pieruschka, U. Schurr, U. Rascher, A. Schickling, B. Keller

10. Development of a Crop Edge Line Detection Algorithm Using a Laser Scanner for an Autonomous Combine Harvester

The high cost of real-time kinematic (RTK) differential GPS units required for autonomous guidance of agricultural machinery has limited their use in practical auto-guided systems especially applicable to small-sized farming conditions. A laser range finder (LRF) scanner system with a pan-tilt unit (PTU) has the ability to create a 3D profile of objects with a high level of accuracy by scanning their surroundings in a fan shape based on the time-of-flight measurement principle. This paper describes... C. Jeon, H. Kim, X. Han, H. Moon

11. Integrated Approach to Site-specific Soil Fertility Management

In precision agriculture the lack of affordable methods for mapping relevant soil attributes is a funda­mental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil fertility... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor

12. Detection of Potato Beetle Damage Using Remote Sensing from Small Unmanned Aircraft Systems

Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution.  We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center (HAREC) to assess advantages and disadvantages of sUAS for precision farming. In 2014, we conducted an experiment in irrigated potatoes with 4 levels of artificial infestation by Colorado Potato Beetles.... E. Hunt, S.I. Rondon, A.E. Bruce, R.W. Turner, J.J. Brungardt

13. Evaluation of a Sensor and Control Interface Module for Monitoring of Greenhouse Environment

Protected horticulture in greenhouses and plant factories has been increased in many countries due to the advantages of year-round production in controlled environment for improved productivity and quality. For protected horticulture, environmental conditions are monitored and controlled through wired and wireless devices. Various devices are used for monitoring and control of spatial and temporal variability in crop growth environmental conditions. Recently, various sensors and control devices,... N. Sung, S. Chung, Y. Kim, K. Han, J. Choi, J. Kim, Y. Cho, S. Jang

14. Use of a Cropping System Model for Soil-specific Optimization of Limited Water

In the arena of modern agriculture, system models capable of simulating the complex interactions of all the relevant processes in the soil-water-plant- atmosphere continuum are widely accepted as potential tools for decision support to optimize crop inputs of water to achieve location specific yield potential while minimizing environmental (soil and water resources) impacts. In a recent study, we calibrated, validated, and applied the CERES-Maize v4.0 model for simulating limited-water irrigation... L.R. Ahuja, S.A. Saseendran, L. Ma, D.C. Nielsen, T.J. Trout, A.A. Andales, N.C. Hansen

15. An Efficient Data Warehouse for Crop Yield Prediction

Nowadays, precision agriculture combined with modern information and communications technologies, is becoming more common in agricultural activities such as automated irrigation systems, precision planting, variable rate applications of nutrients and pesticides, and agricultural decision support systems. In the latter, crop management data analysis, based on machine learning and data mining, focuses mainly on how to efficiently forecast and improve crop yield. In recent years, raw and semi-processed... V.M. Ngo, N. Le-khac, M. Kechadi

16. Supporting and Analysing On-Farm Nitrogen Tramline Trials So Farmers, Industry, Agronomists and Scientists Can LearN Together

Nitrogen fertilizer decisions are considered important for the agronomic, economic and environmental performance of cereal crop production. Despite good recommendation systems large unpredicted variation exists in measured N requirements. There may be fields and farms that are consistently receiving too much or too little N fertilizer, therefore losing substantial profit from wasted fertilizer or lost yield. Precision farming technologies can enable farmers (& researchers) to test appropriate... D. Kindred, R. Sylvester-bradley, S. Clarke, S. Roques, D. Hatley, B. Marchant

17. Opportunities for Precision Agriculture in Serbia

The aim of this paper is to analyze the factors leading to low adoption rate of precision farming in Serbia and to describe steps being taken by BioSense institute to increase it. The majority of the arable land in Serbia is grown by small family owned and operated farms most of which are in the range of 2 to 5 ha making them highly unsustainable. Only 16% of the arable land is managed by agricultural companies and cooperatives. We believe that the adoption of advanced technologies with the currently... A.C. Tagarakis, F. Van evert, D. Milic, V. Crnojevic, V. Crnojevic-bengin, C. Kempenaar, N. Ljubicic

18. Using an Unmanned Aerial Vehicle with Multispectral with RGB Sensors to Analyze Canola Yield in the Canadian Prairies

In 2017 canola was planted on 9 million hectares in Canada surpassing wheat as the most widely planted crop in Canada.  Saskatchewan is the dominant producer with nearly 5 million hectares planted in 2017.  This crop, seen both as one of the highest-yielding and most profitable, is also one of most expensive and input-intensive for producers on the Canadian Prairies.   In this study, the effect of natural and planted shelterbelts on canola yield was compared with canola yield... K. Hodge, L. Bainard, A. Smith, F. Akhter

19. Field Phenotyping and an Example of Proximal Sensing of Photosynthesis

Field phenotyping conceptually can be divided in five pillars 1) traits of interest 2) sensors to measure these traits 3) positioning systems to allow high throughput measurements by the sensors 4) experimental sites and 5) environmental monitoring. In this paper we will focus on photosynthesis as trait of interest, measured by remote active fluorescence. The sensor presented is the Light Induced Fluorescence Transient (LIFT) instrument. The LIFT instrument is integrated in three positioning systems.... O. Muller, B. Keller, L. Zimmermanm, C. Jedmowski, V. Pingle, K. Acebron, N. Zendonadi, A. Steier, R. Pieruschka, U. Schurr, U. Rascher, T. Kraska

20. Design of Ground Surface Sensing Using RADAR

Ground sensing is the key task in harvesting head control system. Real time sensing of field topography under vegetation canopy is very challenging task in wild blueberry cropping system. This paper presents the design of an ultra-wide band RADAR sensing, scanning device to recognize the soil surface level under the canopy structure. Requirements for software and hardware were considered to determine the usability of the ultra-wide band RADAR system.An automated head elevation... M.M. Mohamed, Q. Zaman, T. Esau, A. Farooque

21. Use of MLP Neural Networks for Sucrose Yield Prediction in Sugarbeet

INTRODUCTION Sugar beet is one of the more technified agro industries in Spain. In the last years, it has leaded as well the digital transformation with the objective of maintaining sugar beet competitivity both national and internationally. Among other lines, very high potential has been identified in determining the sucrose content using a combination of Artificial Intelligence and Remote Sensing. This work presents the conclusions of an extensive data acquisition task, creation of... M. Cabrera dengra, C. Ferraz pueyo, V. Pajuelo madrigal, L. Moreno heras, G. Inunciaga leston, R. Fortes

22. A Bayesian Network Approach to Wheat Yield Prediction Using Topographic, Soil and Historical Data

Bayesian Network (BN) is the most popular approach for modeling in the agricultural domain. Many successful applications have been reported for crop yield prediction, weed infestation, and crop diseases. BN uses probabilistic relationships between variables of interest and in combination with statistical techniques the data modeling has many advantages. The main advantages are that the relationships between variables can be learned using the model as well as the potential to deal with missing... M. Karampoiki, L. Todman, S. Mahmood, A. Murdoch, D. Paraforos, J. Hammond, E. Ranieri

23. Snap-shot Hyperspectral Camera for Potassium Prediction of Peach Trees Using Multivariate Analysis

Hyperspectral imaging (HSI) is an emerging technology being utilized in agriculture. This system could be used to monitor the overall health of plants or pest disease detection. As sensing technology advances, measuring nutrient levels and disease detection also progresses. This study aimed to predict the levels of potassium (K) content in peach leaves with the new snapshot hyperspectral camera. The study was conducted at the Clemson University Musser Fruit Research Farm (Seneca, SC, USA, 34.61... J.J. Maja, M. Abenina, M. Cutulle, J. Melgar, H. Liu

24. Agriculture Machine Guidance Systems: Performance Analysis of Professional GNSS Receivers

GNSS (Global Navigation Satellite Systems) plays nowadays a major role in different civilian activities and is a key technology enabling innovation in different market sectors. For instance, GNSS-enabled solutions are widespread within the Precision Agriculture and, among them, applications in the field of machinery guidance are commonly employed to optimize typical agriculture practices. The scope of this paper is to present the outcomes of the agriculture testing campaign performed,... J. Capolicchio, D. Mennuti, I. Milani, M. Fortunato, R. Petix, J. Reyes gonzalez, M. Sunkevic

25. Yield Potential Zones and Their Relationship with Soil Taxonomic Classes and Management Zones

The use of management zones (MZ) to subdivide agricultural areas based on the variability of yield potential and production factors is increasingly being explored by scientific research and demanded by farmers. However, there is still much uncertainty about which layers of information and procedures should be adopted for this purpose. Thus, our goal was to demonstrate whether simplistic approaches to creating MZ can satisfactorily address the variability of yield potential and soil classes. For... L.R. Amaral, H. Oldoni, D.D. Melo, N.A. Rosin, M.R. Alves, J.M. Demattê

26. Voronoi-based Ant Colony Optimization Approach: Autonomous Robotic Swarm Navigation for Crop Disease Detection

The early detection of agricultural diseases is essential for sustaining food production and economic viability over the long term. To improve disease detection in agriculture, this paper presents an innovative computational approach that utilizes the Voronoi-based Ant Colony Optimization (V-ACO) algorithm with Swarm Robotics (SR). Inspired by the social behaviors observed in insect colonies such as honeybees and ants, SR offers new opportunities for precision farming. SR utilizes the coordinated... S. Gummi, M. Alahe, Y. Chang, C. Pack

27. Assessing Soybean Water Stress Patterns and ENSO Occurrence in Southern Brazil: an in Silico Approach

Water stress (WS) is one of the most important abiotic stresses worldwide, responsible for crop yield penalties and impacting food supply. The frequency and intensity of weather stresses are relevant to delimitating agricultural regions. In addition, El Nino Southern Oscillation (ENSO) has been employed to forecast the occurrence of seasonal WS. Lastly, planting date and cultivar maturity selection are key management strategies for boosting soybean (Glycine max (L.) Merr.) yield... A. Carcedo, L.F. Antunes de almeida, T. Horbe, G. Corassa, L.P. Pott, I. Ciampitti, G.D. Hintz, T. Hefley, R.A. Schwalbert, V. Prasad

28. Environmental Characterization for Rainfed Maize Production in the US Great Plains Region

Identifying regions with similar productivity and yield-limiting climatic factors enables the design of tailored strategies for rainfed maize (Zea mays L.) production in vulnerable environments. Within the United States (US) Great Plains region, rainfed maize production in Kansas is susceptible to weather fluctuations. This study aims to delimit environmental regions with similar crop growth conditions and to identify the main climatic factors limiting rainfed maize yield, using the state... L.N. Lingua, A. Carcedo, V. Gimenez, G. Maddonni, I. Ciampitti

29. On-farm Experimentation Case Study in Brazil: Evaluation of Soybean Seeding Rate Using Resources Available at the Farm

In order to maximize grain yield in soybean (Glycine max [L.] Merr.) it is necessary that the plant population is correctly defined. Production environments differ spatially, and cultivar holders suggest plant populations across macroregions and in broad ranges. Refinements of planting seasons and populations are carried out through tests on many properties, often costly and sometimes unrepresentative of most fields. Tools for managing spatial variability are ways to conduct more... M. Rodrigues alves franchi, I. Molina cyrineu, F. Kagami taira, L. Hunhoff, L.M. Gimenez