Proceedings

Find matching any: Reset
Maja, J.J
Magalhães, P.S
Clay, S.A
Cox, A.S
Anderson, L
Cardoso, G.M
Goeringer, P
Scholz, C
Joshi, N
Kim, D
Evans, F
Garc, A
Carter, A
Add filter to result:
Authors
Garcia-Torres, L
Gomez-Candon, D
Caballero-Novella, J.J
Gomez-Casero, M
Pe, J.M
Jurado-Exp, M
Lopez-Granados, F
Castillejo-Gonz, I
Garc, A
Garcia-Torres, L
Gomez-Candon, D
Caballero-Novella, J.J
Pe, J.M
Jurado-Exp, M
Castillejo-Gonz, I
Garc, A
Lopez-Granados, F
Prassack, L
Göttinger, M
Hinck, S
Möller, K
Ruckelshausen, A
Scholz, C
Moon, J
Kim, S
Lee, J
Yang, W
Kim, D
Khot, L
Sankaran, S
Johnson, D
Carter, A
Serra, S
Musacchi, S
Cummings, T
Goeringer, P
Ellixson, A
Moyle, J
Castro, S.G
Sanches, G.M
Cardoso, G.M
Silva, A.E
Franco, H.C
Magalhães, P.S
Ellixson, A
Goeringer, P
Griffin, T
Klein, R.N
Golus, J.A
Cox, A.S
Clay, D.E
Clay, S.A
Reicks, G
Horvath, D
Schenatto, K
Souza, E.G
Bazzi, C.L
Gavioli, A
Betzek, N.M
Magalhães, P.S
Bazzi, C.L
Jasse, E.P
Souza, E.G
Magalhães, P.S
Michelon, G.K
Schenatto, K
Gavioli, A
Cook, S
Lacoste, M
Evans, F
Ridout, M
Gibberd, M
Oberthur, T
Tsukor, V
Scholz, C
Nietfeld, W
Heinrich, T
Mosler , T
Lorenz, F
Najdenko, E
Möller, A
Mentrup, D
Ruckelshausen, A
Hinck, S
Caron, J
Anderson, L
Sauvageau, G
Gendron, L
Cook, S
Lacoste, M
Evans, F
Tremblay, N
Adamchuk, V
Pereira, F.R
Dos Reis, A.A
Freitas, R.G
Oliveira, S.R
Amaral, L.R
Figueiredo, G.K
Antunes, J.F
Lamparelli, R.A
Moro, E
Pereira, N.D
Magalhães, P.S
Pereira, F.R
Lima, J.P
Freitas, R.G
Dos Reis, A.A
Amaral, L.R
Figueiredo, G.K
Lamparelli, R.A
Pereira, J.C
Magalhães, P.S
Maja, J.J
Abenina, M
Cutulle, M
Melgar, J
Liu, H
Neupane, J
Joshi, N
Fulton, J.P
Khanal, S
B K, A
Bhattarai, B
Topics
Remote Sensing Applications in Precision Agriculture
Engineering Technologies and Advances
Emerging Issues in Precision Agriculture (Energy, Biofuels, Climate Change, Standards)
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Unmanned Aerial Systems
Precision Nutrient Management
Standards & Data Stewardship
Guidence, Auto steer, and Robotics
Spatial and Temporal Variability in Crop, Soil and Natural Resources
On Farm Experimentation with Site-Specific Technologies
Big Data, Data Mining and Deep Learning
Site-Specific Nutrient, Lime and Seed Management
Precision Horticulture
Workshops
Big Data, Data Mining and Deep Learning
In-Season Nitrogen Management
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Site-Specific Nutrient, Lime and Seed Management
Type
Oral
Poster
Year
2010
2014
2016
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results20 paper(s) found.

1. Sectioning And Assessment Remote Images For Precision Agriculture: The Case Of Orobanche Crenate In Pea Crop

  The software SARI® has been developed to implement precision agriculture strategies through remote sensing imagery. It is written in IDL® and works as an add-on of ENVI®. It has been designed to divide remotely sensed imagery into “micro-images”, each corresponding to a small area (“micro-plot”), and to determine the quantitative agronomic and/or environmental biotic (i.e. weeds, pathogens) and/or non-biotic (i.e. nutrient levels) indicator/s... L. Garcia-torres, D. Gomez-candon, J.J. Caballero-novella, M. Gomez-casero, J.M. Pe, M. Jurado-exp, F. Lopez-granados, I. Castillejo-gonz, A. Garc

2. Management Of Remote Imagery For Precision Agriculture

Satellite and airborne remotely sensed images cover large areas, which normally include dozens of agricultural plots. Agricultural operations such as sowing, fertilization, and pesticide applications are designed for the whole plot area, i.e. 5 to 20 ha, or through precision agriculture. This takes into account the spatial variability of biotic and of abiotic factors and uses diverse technologies to apply inputs at variable rates, fitted to the needs of each small defined area, i.e. 25 to 200... L. Garcia-torres, D. Gomez-candon, J.J. Caballero-novella, J.M. Pe, M. Jurado-exp, I. Castillejo-gonz, A. Garc, F. Lopez-granados, L. Prassack

3. Automatic Soil Penetrometer Measurements And GIS-Based Documentation With The Autonomous Field Robot Platform BoniRob

For a sustainable agriculture, reliable measurements of soil properties and its interpretation are of highest relevance. Until today most of the measurements are carried out manually or by integrating off-line laboratories. Moreover, the number and density of measurement points is always an important aspect with respect to the statistical significance of the results. In this work a fully automatic measurement system has been developed and applied for the first time with free selectable... M. Göttinger, S. Hinck, K. Möller, A. Ruckelshausen, C. Scholz

4. A Study On Diagnostic System Based On ISOAgLIB For Agricultural Vehicles

  Nowadays the growth of the embedded electronics and communications has demanded the development of applications in agricultural machinery in Korean agroindustry. The root reason is that most of agricultural machineries produced in Korea does not apply international standard. Therefore, the incompatibility problem between hardware, software and data formats has become a major obstacle for exporting agricultural products made by Korea to the world. In... J. Moon, S. Kim, J. Lee, W. Yang, D. Kim

5. Unmanned Aerial System Applications In Washington State Agriculture

Three applications of unmanned aerial systems (UAS) based imaging were explored in row, field, and horticultural crops at Washington State University (WSU). The applications were: to evaluate the necrosis rate in potato field crop rotation trials, to quantify the emergence rates of three winter wheat advanced yield trials, and detecting canker disease-infection in pear. The UAS equipped with green-NDVI imaging was used to acquire field aerial images. In the first application,... L. Khot, S. Sankaran, D. Johnson, A. Carter, S. Serra, S. Musacchi, T. Cummings

6. Privacy Issues and the Use of UASs/Drones in Maryland

 According to the Federal Aviation Administration (FAA), the lawful use of Unmanned Aerial Vehicles (UAV), also known as Unmanned Aircraft Systems (UAS), or more commonly as drones, are currently limited to military, research, and recreational applications. Under the FAA’s view, commercial uses of drones are illegal unless approved by the Federal government.  This will change in the future.  Congress authorized the FAA to develop regulations for the use of drones by private... P. Goeringer, A. Ellixson, J. Moyle

7. Use of Crop Canopy Reflectance Sensor in Management of Nitrogen Fertilization in Sugarcane in Brazil

Given the difficulty to determine N status in soil testing and lack of crop parameters to recommend N for sugarcane in Brazil raise the necessity of identify new methods to find crop requirement to improve the N use efficiency. Crop canopy sensor, such as those used to measure indirectly chlorophyll content as N status indicator, can be used to monitor crop nutritional demand. The objective of this experiment was to assess the nutritional status of the sugarcane fertilized with different nitrogen... S.G. Castro, G.M. Sanches, G.M. Cardoso, A.E. Silva, H.C. Franco, P.S. Magalhães

8. Ownership and Protections of Farm Data

Farm data has been a contentious point of debate with respect to ownership rights and impacts when access rights are misappropriated. One of the leading questions farmers ask deals with the protections provided to farm data. Although no specific laws or precedence exists, the possibility of trade secret is examined and ramifications for damages discussed. Farm management examples are provided to emphasize the potential outcomes of each possible recourse for misappropriating farm data. ... A. Ellixson, P. Goeringer, T. Griffin

9. Seeding and Planting Plots for Crop Performance Evaluation Using Gps-rtk Auto Steering

Crop performance evaluation plots are seeded both on and off the University of Nebraska West Central Research and Extension Center. Plots off the Center must match the producer’s rows for pesticide application, cultivation, ditching, irrigation, fertilization and any other operations performed in the fields. With row crops the producer blank-plants the plot area before we can follow up with planting the plots. This means that we have to wait for the producer to plant in the field. Blank-planting... R.N. Klein, J.A. Golus, A.S. Cox

10. Plant and N Impacts on Corn (Zea Mays) Growth: Whats Controlling Yield?

Studies were conducted in South Dakota to assess mechanisms of intraspecific competition between corn (Zea mays) plants. Treatments were two plant populations (74,500 and 149,000 plants ha-1), three levels of shade (0, 40, and 60%) on the low plant population, two water treatments (natural precipitation and natural + irrigation), and two N rates (0 and 228 kg N ha-1). In-season leaf chlorophyll content was measured. At harvest, grain and stover yields were quantified with grain 13C-discrimination... D.E. Clay, S.A. Clay, G. Reicks, D. Horvath

11. Use of Farmer’s Experience for Management Zones Delineation

In the management of spatial variability of the fields, the management zone approach (MZs) divides the area into sub-regions of minimal soil and plant variability, which have maximum homogeneity of topography and soil conditions, so that these MZs must lead to the same potential yield. Farmers have experience of which areas of a field have high and low yields, and the use of this knowledge base can allow the identification of MZs in a field based on production history. The objective of this study... K. Schenatto, E.G. Souza, C.L. Bazzi, A. Gavioli, N.M. Betzek, P.S. Magalhães

12. AgDataBox – API (Application Programming Interface)

E-agricultural is an emerging field focusing in the enhancement of agriculture and rural development through improve in information and data processing. The data-intensive characteristic of these domains is evidenced by the great variety of data to be processed and analyzed. Countrywide estimates rely on maps, spectral images from satellites, and tables with rows for states, regions, municipalities, or farmers. Precision agriculture (PA) relies on maps of within field variability of soil and plant... C.L. Bazzi, E.P. Jasse, E.G. Souza, P.S. Magalhães, G.K. Michelon, K. Schenatto, A. Gavioli

13. An On-farm Experimental Philosophy for Farmer-centric Digital Innovation

In this paper, we review learnings gained from early On-Farm Experiments (OFE) conducted in the broadacre Australian grain industry from the 1990s to the present day. Although the initiative was originally centered around the possibilities of new data and analytics in precision agriculture, we discovered that OFEs could represent a platform for engaging farmers around digital technologies and innovation. Insight from interacting closely with farmers and advisors leads us to argue for a change... S. Cook, M. Lacoste, F. Evans, M. Ridout, M. Gibberd, T. Oberthur

14. soil2data: Concept for a Mobile Field Laboratory for Nutrient Analysis

Knowledge of the small-scale nutrient status of arable land is an important basis for optimizing fertilizer use in crop production. A mobile field laboratory opens up the possibility of carrying out soil sampling and nutrient analysis directly on the field. In addition to the benefits of fast data availability and the avoidance of soil material transport to the laboratory, it provides a future foundation for advanced application options, e.g. a high sampling density, sampling of small sub-fields... V. Tsukor, C. Scholz, W. Nietfeld, T. Heinrich, T. Mosler , F. Lorenz, E. Najdenko, A. Möller, D. Mentrup, A. Ruckelshausen, S. Hinck

15. Real Time Precision Irrigation with Variable Setpoint for Strawberry to Generate Water Savings

Water is a precious resource that is becoming increasingly scarce as the population grows and water resources are depleted in some locations or under increased control elsewhere, due to local availability or groundwater contamination issues. It obviously affects strawberry (Fragaria x ananassa Duch.) production in populated areas and water cuts are being imposed to many strawberry growers to save water, with limited information on the impact on crop yield. Precision irrigation technologies are... J. Caron, L. Anderson, G. Sauvageau, L. Gendron

16. On-Farm Experimentation and Decision-Support Workshop

This 3-hour workshop discusses the requirements, methods and theories that may be used to assist in making optimal crop management decisions. The first part will focus on on-farm experimentation (OFE): 1) organization and benefits of OFE; 2) social processes and engagement; 3) designs, data and statistics. The second part will demonstrate how to generate insights applicable at the individual farm level using results from research trials collected in a diversity of contexts. Data sharing, meta-analyses... S. Cook, M. Lacoste, F. Evans, N. Tremblay, V. Adamchuk

17. A Framework for Imputation of Missing Parts in UAV Orthomosaics Using Planetscope and Sentinel-2 Data

In recent years, the emergence of Unmanned Aerial Vehicles (UAV), also known as drones, with high spatial resolution, has broadened the application of remote sensing in agriculture. However, UAV images commonly have specific problems with missing areas due to drone flight restrictions. Data mining techniques for imputing missing data is an activity often demanded in several fields of science. In this context, this research used the same approach to predict missing parts on orthomosaics obtained... F.R. Pereira, A.A. Dos reis, R.G. Freitas, S.R. Oliveira, L.R. Amaral, G.K. Figueiredo, J.F. Antunes, R.A. Lamparelli, E. Moro, N.D. Pereira, P.S. Magalhães

18. Nitrogen Status Prediction on Pasture Fields Can Be Reached Using Visible Light UAV Data Combined with Sentinel-2 Imagery

Pasture fields under integrated crop-livestock system usually receive low or no nitrogen fertilization rates, since the expectation is that nitrogen demand will be provided by the soybean remaining straw cropped previously. However, keeping nitrogen at suitable levels in the entire field is the key to achieving sustainability in agricultural production systems. In this sense, remote sensing technologies play an essential role in nitrogen monitoring in pastures and crops. With the launch of the... F.R. Pereira, J.P. Lima, R.G. Freitas, A.A. Dos reis, L.R. Amaral, G.K. Figueiredo, R.A. Lamparelli, J.C. Pereira, P.S. Magalhães

19. Snap-shot Hyperspectral Camera for Potassium Prediction of Peach Trees Using Multivariate Analysis

Hyperspectral imaging (HSI) is an emerging technology being utilized in agriculture. This system could be used to monitor the overall health of plants or pest disease detection. As sensing technology advances, measuring nutrient levels and disease detection also progresses. This study aimed to predict the levels of potassium (K) content in peach leaves with the new snapshot hyperspectral camera. The study was conducted at the Clemson University Musser Fruit Research Farm (Seneca, SC, USA, 34.61... J.J. Maja, M. Abenina, M. Cutulle, J. Melgar, H. Liu

20. Assessing Crop Yield and Profitability with Site-specific Seed Rate Management in Corn and Soybean Cropping Systems

Integrating the information about soil and topographic properties for variable rate seeding is a prerequisite for improved crop production and thus profit. However, limited studies have explored the geospatial and machine learning approaches to understand factors influencing crop yield and profit under site-specific seed rate management. The objectives of this study were to: a) observe the effect of variable seeding rate based on soil and topographic properties on soybean and corn grain yield,... J. Neupane, N. Joshi, J.P. Fulton, S. Khanal, A. B k, B. Bhattarai