Proceedings

Find matching any: Reset
Xie, J
Joshi, R
Pitrat, T
P.W Clevers, J.G
Crnojevic-Bengin, V
Clay, D.E
Xu, X.M
You Fu, E
Warner, D
Varco, J.J
Drewry, J
Vories, E.D
Villodre, J
Wood, B.A
Lee, W
Wallor, E
Johnson, E
Boettinger, J.L
Lupia, F
Pourshamsaei, H
Kukorelli, G
Bodnár, K.B
Weiqiang, F
López-Granados, F
Cesario Pinto, J
Choi, J
Vellidis, G
Long, D.S
Khot, L.R
Cho, W
Oster, Z
Parashuramegowda, C.C
Liu, Z
Vitantonio, L
Helgason, C
Roka, F.M
Hoffmann, W.C
Belasque Junior, J
Russo, J.M
Khun, K
Add filter to result:
Authors
Chung, S
Kim, K
Kim, H
Choi, J
Zhang, Y
Kang, S
Han, K
Hur, S
Wang, J.M
Li, C.M
Yang, X.M
Huang, W.M
Yang, H.M
Xu, X.M
Nino, P
Vanino, S
Lupia, F
Altobelli, F
Vuolo, F
Namdarian, I
De Michele, C
Sun, C
Ji, Z
Qian, J
Li, M
Zhao, L
Li, W
Zhou, C
Du, X
Xie, J
Wu, T
Qu, L
Hao, L
Yang, X
Guangwei, W
Zhijun, M
Liping, C
Weiqiang, F
Jianjun, D
Chung, S
Huh, Y
Choi, J
Ryu, D
Kim, K
Kim, H
Kim, H
Liu, Z
Griffin, T
Kirkpatrick, T
Monfort, S
Ortiz, B.V
Vellidis, G
Balkcom, K
Stone, H
Fulton, J.P
vanSanten, E
Khot, L.R
Ehsani, R
Albrigo, G
Campoy, J
Wellington, C
Swen, W
Camergo Neto, J
Parashuramegowda, C.C
You Fu, E
Yule, I.J
Wood, B.A
Choi, D
Lee, W
Schueller, J.K
Ehsani, R
Roka, F.M
Ritenour, M.A
Cushnahan, M.Z
Yule, I.J
Wood, B.A
Wilson, R
Vellidis, G
Lowrance, C
Fountas, S
Liakos, V
Cho, W
Kim, D
Kang, C
Kim, H
Son, J
Chung, S
Jiang, J
Yun, H
Vellidis, G
Liakos, V
Porter, W
Liang, X
Tucker, M.A
Larson, J.A
Stefanini, M
Lambert, D.M
Yin, X
Boyer, C.N
Varco, J.J
Scharf , P.C
Tubaña, B.S
Dunn, D
Savoy, H.J
Buschermohle, M.J
Tyler, D.D
Gebbers, R
Dworak, V
Mahns, B
Weltzien, C
Büchele, D
Gornushkin, I
Mailwald, M
Ostermann, M
Rühlmann, M
Schmid, T
Maiwald, M
Sumpf, B
Rühlmann, J
Bourouah, M
Scheithauer, H
Heil, K
Heggemann, T
Leenen, M
Pätzold, S
Welp, G
Chudy, T
Mizgirev, A
Wagner, P
Beitz, T
Kumke, M
Riebe, D
Kersebaum, C
Wallor, E
Sanches, G.M
Amaral, L.R
Pitrat, T
Brasco, T
Magalhaes, P.S
Duft, D.G
Franco, H.C
Tremblay, N
Khun, K
Vigneault, P
Bouroubi, M.Y
Cavayas, F
Codjia, C
Ferreyra, R
Applegate, D.B
Berger, A.W
Berne, D.T
Craker, B.E
Daggett, D.G
Gowler, A
Bullock, R.J
Haringx, S.C
Hillyer, C
Howatt, T
Nef, B.K
Rhea, S.T
Russo, J.M
Nieman, S.T
Sanders, P
Wilson, J.A
Wilson, J.W
Tevis, J.W
Stelford, M.W
Shearouse, T.W
Schultz, E.D
Reddy, L
Nguyen, A.T
Thompson, A.L
Sudduth, K.A
Vories, E.D
Nguyen, A.T
Garcia-Torres, L
Peña-Barragán, J.M
Gómez-Candón, D
López-Granados, F
Jurado-Expósito, M
Bonfil, D.J
Mufradi, I
Asido, S
Long, D.S
Franzen, D.W
Boettinger, J.L
Bonfil, D.J
Mufradi, I
Asido, S
Long, D.S
Lan, Y
Huang, Y
Martin, D.E
Hoffmann, W.C
Fritz, B.K
López, J.D
Lins, E.C
Belasque Junior, J
Marcassa, L.G
Clay, D.E
Clay, S.A
Reicks, G
Horvath, D
P.W Clevers, J.G
Wijnholds, K.H
Jukema, J.N
Zhang, X
Helgason, C
Seielstad, G
Shi, L
Warner, D
Lacroix, R
Vasseur, E
Lefebvre, D
Liakos, V
Porter, W
Liang, X
Tucker, M
McLendon, A
Perry, C
Vellidis, G
Liakos, V
Vellidis, G
Lacerda, L
Porter, W
Tucker, M
Cox, C
Pourshamsaei, H
Nobakhti, A
Bodnár, K.B
Nagy, J
Gombos, B
Pourshamsaei, H
Nobakhti, A
Tagarakis, A.C
van Evert, F
Milic, D
Crnojevic, V
Crnojevic-Bengin, V
Kempenaar, C
Ljubicic, N
Seo, Y
Lee, W
Kim, Y
Chung, S
Jang, S
Bae, I
Khun, K
Vigneault, P
Fallon, E
Tremblay, N
Codjia, C
Cavayas, F
Luck, B
Drewry, J
Chassen, E
Steffan, S
Osann, A
Campos, I
Calera, M
Plaza, C
Bodas, V
Calera, A
Villodre, J
Campoy, J
Sanchez, S
Jimenez, N
Lopez, H
Ha, T
Aldridge, K
Johnson, E
Shirtliffe, S.J
Ryu, S
Krys, K
Shirtliffe, S
Duddu, H
Ha, T
Attanayake, A
Johnson, E
Andvaag, E
Stavness, I
Pokhrel, A
Virk, S
Snider, J.L
Vellidis, G
Parkash, V
Gallios, I
Vellidis, G
Butts, C
Kukal, S
Vellidis, G
Cesario Pinto, J
Thompson, L
Mueller, N
Mieno, T
Puntel, L
Paccioretti, P
Balboa, G
Zsebő, S
Kukorelli, G
Vona, V
Bede, L
Stencinger, D
Kovacs, A
Milics, G
Kulmany, I.M
Horváth, B
Hegedűs, G
Abdinoor, J.A
Joshi, R
Khosla, R
Mandal, D
Unruh, R
Admasu, W.A
Unruh, R
Admasu, W.A
Mandal, D
Joshi, R
Khosla, R
Kulmany, I.M
Horváth, B
Kukorelli, G
Zsebő, S
Stencinger, D
Borbás, Z
Pecze, R
Bede, L
Varga, Z
Kósa, A
Pinke, G
Hashim, Z.K
Hegedűs, G
Abdinoor, J.A
Agampodi, G.S
Rossi, C
Almeida, S.L
Sysskind, M.N
Moreno, L.A
Felipe dos Santos, A
Lacerda, L
Vellidis, G
Pilcon, C
Orlando Costa Barboza, T
Vellidis, G
Abney, M
Burlai, T
Fountain, J
Kemerait, R.C
Kukal, S
Lacerda, L
Maktabi, S
Peduzzi, A
Pilcon, C
Sysskind, M
Bedwell, E
Lacerda, L
McAvoy, T
Ortiz, B.V
Snider, J
Vellidis, G
Yu, Z
Shrestha, S
Lacerda, L
Vellidis, G
Pilcon, C
Maktabi, S
Sysskind, M
Vail, B
Oster, Z
Weinhold, B
Puntel, L.A
Pellegrini, P
Joalland , S
Rattalino, J
Vitantonio, L
Oliveira, M.F
Ortiz, B.V
Hanyabui, E
Costa Souza, J.B
Sanz-Saez, A
Luns Hatum de Almeida , S
Pilcon, C
Vellidis, G
Maktabi, S
Vellidis, G
Hoogenboom, G
Boote, K
Pilcon, C
Fountain, J
Sysskind, M
Kukal, S
Topics
Precision Horticulture
Remote Sensing Applications in Precision Agriculture
Information Management and Traceability
Spatial Variability in Crop, Soil and Natural Resources
Guidance, Robotics, Automation, and GPS Systems
Spatial Variability in Crop, Soil and Natural Resources
Emerging Issues in Precision Agriculture (Energy, Biofuels, Climate Change, Standards)
Profitability, Sustainability and Adoption
Sensor Application in Managing In-season Crop Variability
Big Data Mining & Statistical Issues in Precision Agriculture
Decision Support Systems in Precision Agriculture
Precision Nutrient Management
Engineering Technologies and Advances
Profitability, Sustainability and Adoption
Proximal Sensing in Precision Agriculture
Unmanned Aerial Systems
Standards & Data Stewardship
Precision Horticulture
Precision Management / Precision Conservation
Spatial and Temporal Variability in Crop, Soil and Natural Resources
Remote Sensing Application / Sensor Technology
Farm Animals Health and Welfare Monitoring
Decision Support Systems
Drainage Optimization and Variable Rate Irrigation
Wireless Sensor Networks
Smart Weather for Precision Agriculture
Big Data, Data Mining and Deep Learning
Small Holders and Precision Agriculture
Precision Horticulture
Applications of Unmanned Aerial Systems
In-Season Nitrogen Management
Applications of Unmanned Aerial Systems
Decision Support Systems
On Farm Experimentation with Site-Specific Technologies
Scouting and Field Data collection with Unmanned Aerial Systems
In-Season Nitrogen Management
Drainage Optimization and Variable Rate Irrigation
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Artificial Intelligence (AI) in Agriculture
Decision Support Systems
Big Data, Data Mining and Deep Learning
Type
Poster
Oral
Year
2012
2014
2016
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results61 paper(s) found.

1. Remote Control System for Greenhouse Environment Using Mobile Devices

Protected crop production facilities such as greenhouse and plant factory have drawn interest and the area is increasing in Korea as well as in other countries in the world. Remote... S. Chung, K. Kim, H. Kim, J. Choi, Y. Zhang, S. Kang, K. han, S. Hur

2. Estimation of Leaf Nitrogen Concentration in Barley with In Situ Hyperspectral Measurements

Leaf nitrogen concentration (LNC), a good indicator of nitrogen status in crop, is of special significance to diagnose nutrient stress and guide nitrogen fertilization in fields. Due to its non-destructive and quick advantages, hyperspectral remote sensing plays a unique role... J.M. Wang, C.M. Li, X.M. Yang, W.M. Huang, H.M. Yang, X.M. Xu

3. Applications for Precision Agriculture: the Italian Experience of SIRIUS Project

    This paper reports the results of the project SIRIUS (Sustainable Irrigation water management and River-basin... P. Nino, S. Vanino, F. Lupia, F. Altobelli, F. Vuolo, I. Namdarian, C. De michele

4. Towards a Multi-Source Record Keeping System for Agricultural Product Traceability

Agricultural production record keeping is the basis of traceability system. To resolve the problem including single method of information acquisition, weak ability of real-time monitoring and low credibility of history information in agricultural production process, the... C. Sun, Z. Ji, J. Qian, M. Li, L. Zhao, W. Li, C. Zhou, X. Du, J. Xie, T. Wu, L. Qu, L. Hao, X. Yang

5. Evaluation of Application Effect of the Laser Land Leveling Technology in Typical Areas of China

The technology of laser land leveling can improve the accuracy of land leveling and it is the important measure of improving irrigation efficiency and facilitating more uniform distribution of irrigation water. The technology is more widely used in China in... W. Guangwei, M. Zhijun, C. Liping, F. Weiqiang, D. Jianjun

6. Determination of Sensor Locations for Monitoring of Soil Water Content in Greenhouse

 Monitoring and control of environmental condition is highly important for optimum control of the conditions, especially in greenhouse and plant factor, and the condition... S. Chung, Y. Huh, J. Choi, D. Ryu, K. Kim, H. Kim, H. Kim

7. Spatial Econometric Approaches to Develop Site-Specific Nematode Management Strategies in Cotton Production

Root-knot nematode infestations tend to be spatially clustered within agricultural... Z. Liu, T. Griffin, T. Kirkpatrick, S. Monfort

8. Evaluation of The Advantages of Using GPS-Based Auto-Guidance on Rolling Terrain Peanut Fields

  ... B.V. Ortiz, G. Vellidis, K. Balkcom, H. Stone, J. Fulton, E. Vansanten

9. Validation of Variable Rate Spray Decision Rules in Intricate Micro-Metrological Conditions

This study evaluated validity of modified spray decision rules formed to operate axial fan airblast sprayer retrofitted for use in citrus production. The sprayer was field tested in a spraying... L.R. Khot, R. Ehsani, G. Albrigo, J. campoy, C. Wellington, W. Swen, J. Camergo neto

10. Soil And Crop Spatial Variability In Cotton Grown On Deep Black Cotton Soils

Soil spatial variation is observed under similar management situation in cotton growing soils of Northern Karnataka. In view of this an experiment was conducted to study the spatial variability in soil with respect soil reaction (pH), Electrical conductivity (Ec), Organic carbon (OC%), all major (N,P,K), secondary (Ca, Mg and S) and micronutrients (Fe, Zn, Cu and Mn) by assessing soil nutrients in deep black cotton soils of the experimental station for... C.C. Parashuramegowda

11. The Central China Agricultural High-Tech Industry Development Zone

This is a presentation on precision ag opportunities in China. ... E. You fu

12. Precision Agriculture As Bricolage: Understanding The Site Specific Farmer

There is an immediate paradox apparent in precision farming because it applies all of it ‘s precision and recognition of variability to the land, yet operates under the assumption of idealism and normative notions when it comes to considering the farmer.  Precision Agriculture (PA) systems have often considered the farmer as an optimiser of profit, or maximiser of efficiency, and therefore replaceable with mathematical constructs, so that although at the centre of decision... I.J. Yule, B.A. Wood

13. A Precise Fruit Inspection System for Huanglongbing and Other Common Citrus Defects Using GPU and Deep Learning Technologies

World climate change and extreme weather conditions can generate uncertainties in crop production by increasing plant diseases and having significant impacts on crop yield loss. To enable precision agriculture technology in Florida’s citrus industry, a machine vision system was developed to identify common citrus production problems such as Huanglongbing (HLB), rust mite and wind scar. Objectives of this article were 1) to develop a simultaneous image acquisition system using multiple cameras... D. Choi, W. Lee, J.K. Schueller, R. Ehsani, F.M. Roka, M.A. Ritenour

14. Surplus Science and a Non-linear Model for the Development of Precision Agriculture Technology

The advent of ‘big data technologies’ such as hyperspectral imaging means that Precision Agriculture (PA) developers now have access to superabundant and highly  heterogeneous data.  The authors explore the limitations of the classic science model in this situation and propose a new non-linear process that is not based on the premise of controlled data scarcity. The study followed a science team tasked with developing highly advanced hyperspectral techniques for a ‘low... M.Z. Cushnahan, I.J. Yule, B.A. Wood, R. Wilson

15. EZZone - An Online Tool for Delineating Management Zones

Management zones are a pillar of Precision Agriculture research.  Spatial variability is apparent in all fields, and assessing this variability through measurement devices can lead to better management decisions.  The use of Geographic Information Systems for agricultural management is common, especially with management zones.  Although many algorithms have been produced in research settings, no online software for management zone delineation exists.  This research used a common... G. Vellidis, C. Lowrance, S. Fountas, V. Liakos

16. Precision Nutrient Management System Based on Ion and Crop Growth Sensing

Automated sensing and variable-rate supply of nutrients in hydroponic solutions according to the status of crop growth would allow more efficient nutrient management for crop growth in closed systems. The Structure from Motion (SfM) method has risen as a new image sensing method to obtain 3D images of plants that can be used to estimate their growth, such as leaf cover area (LCA), plant height, and fresh weight. In this sense, sensor fusion technology combining ion-selective electrodes (ISEs)... W. Cho, D. Kim, C. Kang, H. Kim, J. Son, S. Chung, J. Jiang, H. Yun

17. A Dynamic Variable Rate Irrigation Control System

Currently variable rate irrigation (VRI) prescription maps used to apply water differentially to irrigation management zones (IMZs) are static.  They are developed once and used thereafter and thus do not respond to environmental variables which affect soil moisture conditions.  Our approach for creating dynamic prescription maps is to use soil moisture sensors to estimate the amount of irrigation water needed to return each IMZ to an ideal soil moisture condition.  The UGA Smart... G. Vellidis, V. Liakos, W. Porter, X. Liang, M.A. Tucker

18. Net Returns and Production Use Efficiency for Optical Sensing and Variable Rate Nitrogen Technologies in Cotton Production

This research evaluated the profitability and N use efficiency of real time on-the-go optical sensing measurements (OPM) and variable-rate technologies (VRT) to manage spatial variability in cotton production in the Mississippi River Basin states of Louisiana, Mississippi, Missouri, and Tennessee. Two forms of OPM and VRT and the existing farmer practice (FP) were used to determine N fertilizer rates applied to cotton on farm fields in the four states. Changes in yields and N rates due to OPM... J.A. Larson, M. Stefanini, D.M. Lambert, X. Yin, C.N. Boyer, J.J. Varco, P.C. Scharf , B.S. Tubaña, D. Dunn, H.J. Savoy, M.J. Buschermohle, D.D. Tyler

19. Integrated Approach to Site-specific Soil Fertility Management

In precision agriculture the lack of affordable methods for mapping relevant soil attributes is a funda­mental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil fertility... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor

20. Apparent Electrical Conductivity Sensors and Their Relationship with Soil Properties in Sugarcane Fields

One important tool within the technological precision agriculture (PA) package are the apparent electrical conductivity (ECa) sensors. This kind of sensor shows the ability in mapping soil physicochemical variability quickly, with high resolution and at low cost. However, the adoption of this technology in Brazil is not usual, particularly on sugarcane fields. A major issue for farmers is the applicability of ECa, how to convert ECa data in knowledge that may assist the producer in decision-making... G.M. Sanches, L.R. Amaral, T. Pitrat, T. Brasco, P.S. Magalhaes, D.G. Duft, H.C. Franco

21. Comparative Benefits of Drone Imagery for Nitrogen Status Determination in Corn

Remotely sensed vegetation data provide an effective means of measuring the spatial variability of nitrogen and therefore of managing applications by taking intrafield variations into account. Satellites, drones and sensors mounted on agricultural machinery are all technologies that can be used for this purpose. Although a drone (or unmanned aerial vehicle [UAV]) can produce very high-resolution images, the comparative advantages of this type of imagery have not been demonstrated. The goal of... N. Tremblay, K. Khun, P. Vigneault, M.Y. Bouroubi, F. Cavayas, C. Codjia

22. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT

AgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway identified... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy

23. Automated Support Tool for Variable Rate Irrigation Prescriptions

Variable rate irrigation (VRI) enables center pivot management to better meet non-uniform water and fertility needs. This is accomplished through correctly matching system water application with spatial and temporal variability within the field. A computer program was modified to accommodate GIS data layers of grid-based field soil texture properties and fertility needs in making management decisions. The program can automatically develop a variable rate application prescription along the lateral... A.T. Nguyen, A.L. Thompson, K.A. Sudduth, E.D. Vories, A.T. Nguyen

24. A Software for Managing Remotely Sensed Imagery of Orchards Plantations for Precision Agriculture

Agronomic and environmental characteristics of fruit orchards/ forests can be automatically assessed from remote-sensing images by a computer programme named Clustering Assessment (CLUAS®). The aim of this paper is to describe the operational procedure of CLUAS and illustrate examples of the information provided for citrus orchards and Mediterranean forest. CLUAS® works as an additional menu (“add-on”) of ENVI®, a world-wide known image-processing programme, and operates... L. Garcia-torres, J.M. Peña-barragán, D. Gómez-candón, F. López-granados, M. Jurado-expósito

25. Precision Nitrogen Management Based on Nitrogen Removal in Rainfed Wheat

Growers of hard red spring wheat may capture price premiums for maximizing the protein concentration of their grain. Nitrogen (N) nutrition adequacy is crucial to achieving high grain protein concentration. The objective of this study was to determine the usefulness of N removal maps by comparing grain protein, yields, and dollar returns obtained from this precision N management approach with that from conventional uniform N management. Strip plot experiments were designed to compare spatially... D.J. Bonfil, I. Mufradi, S. Asido, D.S. Long

26. Terrain Modeling to Improve Soil Survey in North Dakota

Users of site-specific technologies would prefer to use digitized soil survey boundaries to help in delineating management zones for nutrient application. However, the present scale of soil type does not allow meaningful zone delineation. A project was conducted to use terrain modeling and other site- specific tools to delineate smaller-scale soil type boundaries that would be more useful for directing within-field nutrient management. Topography, soil EC, yield mapping and satellite imagery were... D.W. Franzen, J.L. Boettinger

27. On-combine Near Infrared Spectroscopy Applied to Prediction of Grain Test Weight

Whole grain near infrared (NIR) spectroscopy is a widely accepted method for analysis of the protein and moisture contents of grain, but is seldom applied to predict test weight. Test weight is a widely used specification for grading of wheat and predictor of flour yield. The objective of this study was to determine whether NIR spectroscopy could be used for measuring the test weight of grain. Reference grain samples of hard red spring wheat were obtained from dryland fields in the semiarid Negev... D.J. Bonfil, I. Mufradi, S. Asido, D.S. Long

28. Development of an Airborne Remote Sensing System for Aerial Applicators

An airborne remote sensing system was developed and tested for recording aerial images of field crops, which were analyzed for variations of crop health or pest infestation. The multicomponent system consists of a multi-spectral camera system, a camera control system, and a radiometer for normalizing images. To overcome the difficulties currently associated with correlating imagery data with what is actually occurring on the ground (a process known as ground truthing); a hyperspectral reflectance... Y. Lan, Y. Huang, D.E. Martin, W.C. Hoffmann, B.K. Fritz, J.D. López

29. Detection of Citrus Canker in Orange Plantation Using Fluorescence Spectroscopy

Citrus canker is a serious disease, caused by Xanthomonas axonopodis pv. Citri bacteria, which infects orange trees (Citrus aurantium L.), leading to a large economic loss in the orange juice production. Brazil produces 50% of the industrialized orange juice in the world. Therefore, the early detection and control of such disease is important for Brazilian economy. However this task is very hard and so far it has been done by naked eye inspection of each tree. Our goal is to... E.C. Lins, J. Belasque junior, L.G. Marcassa

30. Plant and N Impacts on Corn (Zea Mays) Growth: Whats Controlling Yield?

Studies were conducted in South Dakota to assess mechanisms of intraspecific competition between corn (Zea mays) plants. Treatments were two plant populations (74,500 and 149,000 plants ha-1), three levels of shade (0, 40, and 60%) on the low plant population, two water treatments (natural precipitation and natural + irrigation), and two N rates (0 and 228 kg N ha-1). In-season leaf chlorophyll content was measured. At harvest, grain and stover yields were quantified with grain 13C-discrimination... D.E. Clay, S.A. Clay, G. Reicks, D. Horvath

31. Remote Sensing-based Biomass Maps for an Efficient Use of Fertilizers

For decades the main objective of farmers was to get the highest yields from their farmland. Nowadays, quality of agricultural products is becoming more and more important for the largest returns. In addition, the effects on our environment are also becoming important. These put increasing limitations on modern agriculture. So-called site-specific management can optimize the input of, for instance, nutrients and pesticides to the need of the plants. In this study, the objective was to study whether... J.G. P.w clevers, K.H. Wijnholds, J.N. Jukema

32. Zone Mapping Application for Precision-farming: a Decision Support Tool for Variable Rate Application

We have developed a web-based decision support tool, Zone Mapping Application for Precision Farming (ZoneMAP, http://zonemap.umac.org), which can automatically determine the optimal number of management zones and delineate them using satellite imagery and field survey data provided by users. Application rates, say for fertilizer, can be prescribed for each zone and downloaded in a variety of formats to ensure compatibility with GPS-enabled farming applicators. ZoneMAP is linked to Digital Northern... X. Zhang, C. Helgason, G. Seielstad, L. Shi

33. Detection and Monitoring the Risk Level for Lameness and Lesions in Dairy Herds by Alternative Machine-Learning Algorithms

Machine-learning methods may play an increasing role in the development of precision agriculture tools to provide predictive insights in dairy farming operations and to routinely monitor the status of dairy cows. In the present study, we explored the use of a machine-learning approach to detect and monitor the welfare status of dairy herds in terms of lameness and lesions based on pre-recorded farm-based records. Animal-based measurements such as lameness and lesions are time-consuming, expensive... D. Warner, R. Lacroix, E. Vasseur, D. Lefebvre

34. Three Years of On-Farm Evaluation of Dynamic Variable Rate Irrigation: What Have We Learned?

This paper will present a dynamic Variable Rate Irrigation System developed by the University of Georgia. The system consists of the EZZone management zone delineation tool, the UGA Smart Sensor Array (UGA SSA) and an irrigation scheduling decision support tool. An experiment was conducted in 2015, 2016 and 2017 in two different peanut fields to evaluate the performance of using the UGA SSA to dynamically schedule Variable Rate Irrigation (VRI). For comparison reasons strips were designed within... V. Liakos, W. Porter, X. Liang, M. Tucker, A. Mclendon, C. Perry, G. Vellidis

35. Management Zone Delineation for Irrigation Based on Sentinel-2 Satellite Images and Field Properties

This paper presents a case study of the first application of the dynamic Variable Rate Irrigation (VRI) System developed by the University of Georgia to cotton. The system consists of the EZZone management zone software, the University of Georgia Smart Sensor Array (UGA SSA) and an irrigation scheduling decision support tool. An experiment was conducted in 2017 in a cotton field to evaluate the performance of the system in cotton. The field was divided into four parallel strips. All four strips... V. Liakos, G. Vellidis, L. Lacerda, W. Porter, M. Tucker, C. Cox

36. A Comparative Study of Field-Wide Estimation of Soil Moisture Using Compressive Sensing

In precision agriculture, monitoring of soil moisture plays an essential role in correct decision making. In practice, regular mesh installation, or large random deployment of moisture sensors over a large field is not possible due to cost and maintenance prohibitions. Consequently, direct measurement of moisture is possible at only a few points in the field. A value for the moisture may then be estimated for the remaining areas using a variety of algorithms. It is shown that although... H. Pourshamsaei, A. Nobakhti

37. Correlations Between Meteorological Parameters and the Water Loss of Maize from Silking to Harvesting

The University of Debrecen provides outstanding conditions for the development of “Smart Weather for Precision Agriculture” programs. The reliability of research is provided by the Polyfactoral Long-term Field Experiments of Debrecen (hybrid x fertilisation x plant density x tillage x irrigation) established in 1983. Within this research program, it is possible to examine various crop cultures, cultivars and hybrids under changing natural, environmental and weather circumstances,... K.B. Bodnár, J. Nagy, B. Gombos

38. Optimal Sensor Placement for Field-Wide Estimation of Soil Moisture

Soil moisture is one of the most important parameters in precision agriculture. While techniques such as remote sensing seems appropriate for moisture monitoring over large areas, they generally do not offer sufficiently fine resolution for precision work, and there are time restrictions on when the data is available. Moreover, while it is possible to get high resolution-on demand data, but the costs are often prohibitive for most developing countries. Direct ground level measurement... H. Pourshamsaei, A. Nobakhti

39. Opportunities for Precision Agriculture in Serbia

The aim of this paper is to analyze the factors leading to low adoption rate of precision farming in Serbia and to describe steps being taken by BioSense institute to increase it. The majority of the arable land in Serbia is grown by small family owned and operated farms most of which are in the range of 2 to 5 ha making them highly unsustainable. Only 16% of the arable land is managed by agricultural companies and cooperatives. We believe that the adoption of advanced technologies with the currently... A.C. Tagarakis, F. Van evert, D. Milic, V. Crnojevic, V. Crnojevic-bengin, C. Kempenaar, N. Ljubicic

40. Variability Analysis of Temperature and Humidity for Control Optimization of a Hybrid Dehumidifier with a Heating Module for Greenhouses

Protected horticulture using greenhouses and also recently plant factories is becoming more popular, especially for high-value crops such as paprika, tomato, strawberry, due to year-round production of high yield and better quality crops under controlled environment. Temperature and humidity are most important ambient environmental factors for not only optimum crop growth but also disease control. This study was conducted to analyze vertical and spatial variability of temperature and humidity... Y. Seo, W. Lee, Y. Kim, S. Chung, S. Jang, I. Bae

41. Estimating Corn Biomass from RGB Images Acquired with an Unmanned Aerial Vehicle

Above-ground biomass, along with chlorophyll content and leaf area index (LAI), is a key biophysical parameter for crop monitoring. Being able to estimate biomass variations within a field is critical to the deployment of precision farming approaches such as variable nitrogen applications. With unprecedented flexibility, Unmanned Aerial Vehicles (UAVs) allow image acquisition at very high spatial resolution and short revisit time. Accordingly, there has been an increasing interest in... K. Khun, P. Vigneault, E. Fallon, N. Tremblay, C. Codjia, F. Cavayas

42. Unmanned Aerial Systems and Remote Sensing for Cranberry Production

Wisconsin is the largest producer of Cranberries in the United States with 5.6 million barrels produced in 2017. To date, Precision Agriculture technologies adapted to cranberry production have been limited. The objective of this research was to assess the feasibility of the use of commercial remote sensing devices and Unmanned Aerial Systems in cranberry production. Two commercially available sensors were assessed for use in cranberry production: 1) MicaSense Red Edge and 2) Zenmuse XT. Initial... B. Luck, J. Drewry, E. Chassen, S. Steffan

43. Practical Prescription of Variable Rate Fertilization Maps Using Remote Sensing Based Yield Potential

This paper describes a practical approach for the prescription of variable rate fertilization maps using remote sensing data (RS) based on satellite platforms, Landsat 8 and Sentinel-2 constellation. The methodology has been developed and evaluated in Albacete, Spain, in the framework of the project FATIMA (http://fatima-h2020.eu/). The global approach considers the prescription of N management prior to the growing season, based on a spatially distributed N balance. Although the diagnosis of N... A. Osann, I. Campos, M. Calera, C. Plaza, V. Bodas, A. Calera, J. Villodre, J. Campoy, S. Sanchez, N. Jimenez, H. Lopez

44. Knowledge-based Approach for Weed Detection Using RGB Imagery

A workflow was developed to explore the potential use of Phase One RGB for weed mapping in a herbicide efficacy trial in wheat. Images with spatial resolution of 0.8 mm were collected in July 2020 over an area of nearly 2000 square meters (66 plots). The study site was on a research farm at the University of Saskatchewan, Canada. Wheat was seeded on June 29, 2020, at a rate of 75 seeds per square meter with a row spacing of 30.5 cm. The weed species seeded in the trial were kochia, wild oat, wild... T. Ha, K. Aldridge, E. Johnson, S.J. Shirtliffe, S. Ryu

45. Establishment of a Canola Emergence Assessment Methodology Using Image-based Plant Count and Ground Cover Analysis

Manual assessment of emergence is a time-consuming practice that must occur within a short time-frame of the emergence stage in canola (Brassica napus). Unmanned aerial vehicles (UAV) may allow for a more thorough assessment of canola emergence by covering a wider scope of the field and in a more timely manner than in-person evaluations. This research aims to calibrate the relationship between emerging plant population count and the ground cover. The field trial took place at the University... K. Krys, S. Shirtliffe, H. Duddu, T. Ha, A. Attanayake, E. Johnson, E. Andvaag, I. Stavness

46. Potential of UAS Multispectral Imagery for Predicting Yield Determining Physiological Parameters of Cotton

The use of unmanned aerial systems (UAS) in precision agriculture has increased rapidly due to the availability of reliable, low-cost, and high-resolution sensors as well as advanced image processing software. Lint yield in cotton is the product of three physiological parameters: photosynthetically active radiation intercepted by canopy (IPAR), the efficiency of converting intercepted active radiation to biomass (RUE), and the ratio of economic yield to total dry matter (HI). The relationships... A. Pokhrel, S. Virk, J.L. Snider, G. Vellidis, V. Parkash

47. Making Irrigator Pro an Adaptive Irrigation Decision Support System

Irrigator Pro is a public domain irrigation scheduling model developed by the USDA-ARS National Peanut Research Laboratory. The latest version of the model uses either matric potential sensors to estimate the plant’s available soil water or manual data input. In this project, a new algorithm is developed, which will provide growers and consultants with much more flexibility in how they can feed data to the model. The new version will also run with Volumetric Water Content sensors, giving... I. Gallios, G. Vellidis, C. Butts

48. Developing a neural-network model for detecting Aflatoxin hotspots in peanut fields

Aflatoxin is a carcinogenic toxin produced by a soilborne fungi, called Aspergillus flavus, causing a difficult struggle for the peanut industry in terms of produce quality, price and the range of selling market. This study aims to develop a successful U-Net CNN (Convolutional Neural Network) model, a reliable image segmentation method, that will help in distinguishing high probability zones of occurrence of Aflatoxin in peanut fields using remotely sensed hyperspectral imagery. The research was... S. Kukal, G. Vellidis

49. Site-specific Evaluation of Sensor-based Winter Wheat Nitrogen Tools Via On-farm Research

Crop producers face the challenge of optimizing high yields and nitrogen use efficiency (NUE) in their agricultural practices. Enhancing NUE has been demonstrated by adopting digital agricultural technologies for site-specific nitrogen (N) management, such as remote-sensing based N recommendations for winter wheat. However, winter wheat fields are often uniformly fertilized, disregarding the inherent variability within the fields. Thus, an on-farm evaluation of sensor-based N tools is needed to... J. Cesario pinto, L. Thompson, N. Mueller, T. Mieno, L. Puntel, P. Paccioretti, G. Balboa

50. Comparison of NDVI Values at Different Phenological Stages of Winter Wheat (Triticum Aestivum L.)

The main objective of this study is to monitor, detect and quantify the presence of live green vegetation with the MicaSense RedEdge-MX Dual Camera System (MS) mounted on a DJI Matrice 210 V2 and GreenSeeker HCS 250 (GS) in winter wheat (Triticum aestivum L.) by using Normalized Difference Vegetation Index (NDVI). Surveys were conducted in the North-Western part of Hungary, in Mosonmagyaróvár on six different dates. A small-scale field trial in winter wheat was constructed as a randomized... S. Zsebő, G. Kukorelli, V. Vona, L. Bede, D. Stencinger, A. Kovacs, G. Milics, I.M. Kulmany, B. Horváth, G. Hegedűs, J.A. Abdinoor

51. Delineation of Site-Specific Management Zones using Sensor-based Data for Precision N management

Nitrogen is a critical nutrient influencing crop yield, but the common practice of uniform application of nitrogen fertilizer across a field often results in spatially variable nitrogen availability for the crop, leading to over-application in some areas and under-application in others. This imbalance can cause economic losses and significant environmental issues. Precision nitrogen application involves application of N fertilizers based on soil conditions and crop requirements. One approach for... R. Joshi, R. Khosla, D. Mandal, R. Unruh, W.A. Admasu

52. Delineating Dynamic Variable Rate Irrigation Management Zones

Agriculture irrigation strategies have traditionally been made without accounting for the natural small-scale variability in the field, leading to uniform applications that often over-irrigate parts of the field that do not need as much water. The future success of irrigated agriculture depends on advancements in the capability to account for and leverage the natural variability in croplands for optimum irrigation management both in space and time. Variable Rate Irrigation (VRI) management offers... R. Unruh, W.A. Yilma, D. Mandal, R. Joshi, R. Khosla

53. Evaluation of the Effect of Different Herbicide Treatments by Using UAV in Maise (Zea mays L.) Cultivation – First Experiences in a Long-term Experiment at Széchenyi István University, Hungary

As part of the Green Deal, the European Union has set a goal to reduce the use of chemical pesticides by 50 percent until 2030. To achieve this goal, in addition to reducing the amount of pesticide used, attention must also be paid to monitoring the temporal and spatial effects of pesticides on weeds during the cultivation of various crops. Hence, Syngenta Ltd., collaborating with researchers, aimed to monitor the effect of five different types of herbicides by UAV in two tillage treatments (CN... I.M. Kulmany, B. Horváth, G. Kukorelli, S. Zsebő, D. Stencinger, Z. Borbás, R. Pecze, L. Bede, Z. Varga, A. Kósa, G. Pinke, Z.K. Hashim, G. Hegedűs, J.A. Abdinoor, G.S. Agampodi

54. Combining Remote Sensing and Machine Learning to Estimate Peanut Photosynthetic Parameters

The environmental conditions in which plants are situated lead to changes in their photosynthetic rate. This alteration can be visualized by pigments (Chlorophyll and Carotenoids), causing changes in plant reflectance. The goal of this study was to evaluate the performance of different Machine Learning (ML) algorithms in estimating fluorescence and foliar pigments in irrigated and rainfed peanut production fields. The experiment was conducted in the southeast of Georgia in the United States in... C. Rossi, S.L. Almeida, M.N. Sysskind, L.A. Moreno, A. Felipe dos santos, L. Lacerda, G. Vellidis, C. Pilcon, T. Orlando costa barboza

55. Decision Support Tools for Developing Aflatoxin Risk Maps in Peanut Fields

Aspergillus flavus and Aspergillus parasiticus hereafter referred to jointly as A. flavus, are soil fungi that infect and contaminate preharvest and postharvest peanuts with the carcinogenic secondary metabolite aflatoxin. A. flavus can cause extensive economic losses to peanut growers and shellers by contaminating peanut kernels with aflatoxins. In the southeastern U.S., contamination from aflatoxin continues to be a major threat to the peanut industry and... G. Vellidis, M. Abney, T. Burlai, J. Fountain, R.C. Kemerait, S. Kukal, L. Lacerda, S. Maktabi, A. Peduzzi, C. Pilcon, M. Sysskind

56. Using Remote Sensing to Benchmark Crop Coefficient Curves of Sweet Corn Grown in the Southeastern United States

Irrigation is responsible for over 75% of global freshwater use, making it the largest consumer of the world’s freshwater resources. With freshwater scarcity increasing worldwide, increased efficient irrigation water use is necessary. Smart irrigation is described as ‘the linking of technology and fundamental knowledge of crop physiology to significantly increase irrigation water use efficiency'. Irrigation scheduling tools such as smartphone applications have become... E. Bedwell, L. Lacerda, T. Mcavoy, B.V. Ortiz, J. Snider, G. Vellidis, Z. Yu

57. Field Mapping for Aflatoxin Assessment in Peanut Crops Using Thermal Imagery

Aflatoxin is a toxic carcinogenic compound produced by certain species of Aspergillus fungi, which has a significant impact on peanut production. Aflatoxin levels above a certain threshold (20 ppb in the USA and 4 ppb in Europe) make peanuts unsuitable for export, resulting in significant financial losses for farmers and traders. Unmanned Aerial Vehicles (UAVs) are becoming increasingly popular for remote sensing applications in agriculture. Leveraging this advancement, UAV-based thermal imaging... S. Shrestha, L. Lacerda, G. Vellidis, C. Pilcon, S. Maktabi, M. Sysskind

58. Generative Modeling Method Comparison for Class Imbalance Correction

An image dataset, for use in object detection of hay bales, with over 6000 images of both good and bad hay bales was collected.  Unfortunately, the dataset developed a class imbalance, with more good bale images than bad bales.  This dataset class imbalance caused the bad bale class to over train and the good bale class to under train, severely impacting precision, and recall.  To correct this imbalance and provide a comparison of differing generative modeling methods; three different... B. Vail, Z. Oster, B. Weinhold

59. Integrated Data-driven Decision Support Systems

Site-specific and data-driven decision support systems in agriculture are evolving fast with the rapid advancements in cutting-edge technologies such as Agricultural Artificial Intelligence (AgAI) and big data integration. Data driven decision support systems have the potential to revolutionize various aspects of farming, from crop monitoring and precision management decisions to the way growers interact with complex technologies. The AgAI decision support-based systems excel at analyzing... L.A. Puntel, P. Pellegrini, S. Joalland , J. Rattalino, L. Vitantonio

60. Use of Crop and Drought Spectral Indices to Support Harvest Decisions of Peanut Fields in Alabama

Harvest efficiency expressed in quantity and quality of peanut fields could increase if farmers are provided with tools to support harvest decisions. Peanut farmers still rely on a visual and empiric method to assess the right time of peanut maturity but this method does not account for within-field variability of crop growth and maturity. The integration of spectral vegetation indices to assess drought, soil moisture, and crop growth to predict peanut maturity can help farmers strengthen decisions... M.F. Oliveira, B.V. Ortiz, E. Hanyabui, J.B. Costa souza, A. Sanz-saez, S. Luns hatum de almeida , C. Pilcon, G. Vellidis

61. Predicting the Spatial Distribution of Aflatoxin Hotspots in Peanut Fields Using DSSAT CSM-CROPGRO-PEANUT-AFLATOXIN

Aflatoxin contamination in peanuts (Arachis hypogaea L.) is a persistent concern due to its detrimental effects on both profitability and public health. Several plant stress-inducing factors, including high soil temperatures and low soil moisture, have been associated with aflatoxin contamination levels. Understanding the correlation between stress-inducing factors and contamination levels is essential for implementing effective management strategies. This study uses the DSSAT CSM-CROPGRO-Peanut-Aflatoxin... S. Maktabi, G. Vellidis, G. Hoogenboom, K. Boote, C. Pilcon, J. Fountain, M. Sysskind, S. Kukal