Proceedings
Authors
| Filter results9 paper(s) found. |
|---|
1. Detection Of Drainage Failure In Reconstructed Cranberry Soils Using Time Series AnalysisA cranberry farm is often a semi-closed water system, where water is applied by means of irrigation and drained using an artificial drainage system. Cranberry bogs must be drained to the water level inside the surrounding ditches in order to maintain an optimal pore pressure within the root zone, which is important for a number of reasons. First of all, Phytophthara causing root rot are commonly associated with irrigation with contaminated surface water (Oudemans, 1999)... S.J. Gumiere, Y. Périard, J. Caron, D.W. Hallema, J.A. Lafond |
2. Precision Agriculture Techniques for Crop Management in Trinidad and Tobago: Methodology & Field LayoutAgriculture in Trinidad and Tobago has not advanced at the same rate at which new agricultural technology has been released. This has led to large-scale abandonment of crop lands as challenges posed by labor availability and their agronomic capability could not meet the technological demands for agricultural production, competitiveness and sustainability. There is an urgent need to develop technology-based agriculture models to meet the demands of a modern agricultural sector and to maintain its... G. Seepersad, T. Sampson, S. Seepersad, D. Goorahoo |
3. Knowledge-based Approach for Weed Detection Using RGB ImageryA workflow was developed to explore the potential use of Phase One RGB for weed mapping in a herbicide efficacy trial in wheat. Images with spatial resolution of 0.8 mm were collected in July 2020 over an area of nearly 2000 square meters (66 plots). The study site was on a research farm at the University of Saskatchewan, Canada. Wheat was seeded on June 29, 2020, at a rate of 75 seeds per square meter with a row spacing of 30.5 cm. The weed species seeded in the trial were kochia, wild oat, wild... T. Ha, K. Aldridge, E. Johnson, S.J. Shirtliffe, S. Ryu |
4. Establishment of a Canola Emergence Assessment Methodology Using Image-based Plant Count and Ground Cover AnalysisManual assessment of emergence is a time-consuming practice that must occur within a short time-frame of the emergence stage in canola (Brassica napus). Unmanned aerial vehicles (UAV) may allow for a more thorough assessment of canola emergence by covering a wider scope of the field and in a more timely manner than in-person evaluations. This research aims to calibrate the relationship between emerging plant population count and the ground cover. The field trial took place at the University... K. Krys, S. Shirtliffe, H. Duddu, T. Ha, A. Attanayake, E. Johnson, E. Andvaag, I. Stavness |
5. Mapping Marginal Crop Land on Millions of Acres in the Canadian PrairiesCrop fields cover more than 250,000 km2 of the Canadian Prairies, and many of these contain areas of marginal soil condition that are farmed annually at a loss. Setting aside these unprofitable areas may represent savings for growers as well as reductions in GHG emissions, while restoring them with perennial vegetation could create new natural carbon sinks. There is high potential for these in-field marginal zones to act as a nature-based climate solution in Alberta, Saskatchewan and Manitoba.... S. Shirtliffe, T. Ha, K. Nketia |
6. Multi-sensor Remote Sensing: an AI-driven Framework for Predicting Sugarcane FeedstockPredicting saccharine and bioenergy feedstocks in sugarcane enables stakeholders to determine the precise time and location for harvesting a better product in the field. Consequently, it can streamline workflows while enhancing the cost-effectiveness of full-scale production. On one hand, Brix, Purity, and total reducing sugars (TRS) can provide meaningful and reliable indicators of high-quality raw materials for industrial food and fuel processing. On the other hand, Cellulose, Hemicellulose,... M. Barbosa, D. Duron, F. Rontani, G. Bortolon, B. Moreira, L. Oliveira, T. Setiyono, L. Shiratsuchi, R.P. Silva, K.H. Holland |
7. Utilizing Hyperspectral Field Imagery for Accurate Southern Leaf Blight Severity Grading in CornCrop disease detection using traditional scouting and visual inspection approaches can be laborious and time-consuming. Timely detection of disease and its severity over large spatial regions is critical for minimizing significant yield losses. Hyperspectral imagery has been demonstrated as a useful tool for a broad assessment of crop health. The use of spectral bands from hyperspectral data to predict disease severity and progression has been shown to have the capability of enhancing early... G. Vincent, M. Kudenov, P. Balint-kurti, R. Dean, C.M. Williams |
8. Digital Agriculture Driven by Big Data Analytics: a Focus on Spatio-temporal Crop Yield Stability and Land ProductivityIn the ever-evolving landscape of agriculture, the adoption of digital technologies and big data analytics has ushered in a transformative era known as digital agriculture. This paradigm shift is primarily motivated by the pressing imperative to address the growing global population's food requirements, mitigate the adverse effects of climate change, and promote sustainable land management. Canada, a significant player in global food production, has made a substantial commitment to reducing... K. Nketia, T. Ha, H. Fernando, S. Shirtliffe, S. Van steenbergen |
9. Predicting the Spatial Distribution of Aflatoxin Hotspots in Peanut Fields Using DSSAT CSM-CROPGRO-PEANUT-AFLATOXINAflatoxin contamination in peanuts (Arachis hypogaea L.) is a persistent concern due to its detrimental effects on both profitability and public health. Several plant stress-inducing factors, including high soil temperatures and low soil moisture, have been associated with aflatoxin contamination levels. Understanding the correlation between stress-inducing factors and contamination levels is essential for implementing effective management strategies. This study uses the DSSAT CSM-CROPGRO-Peanut-Aflatoxin... S. Maktabi, G. Vellidis, G. Hoogenboom, K. Boote, C. Pilcon, J. Fountain, M. Sysskind, S. Kukal |