Proceedings
Authors
| Filter results8 paper(s) found. |
|---|
1. Development of a Sensing Device for Detecting Defoliation in SoybeanEstimating defoliation by insects in an agricultural field, specifically soybean, is performed by manually removing multiple leaf samples, visually inspecting the leaves for feeding, and assigning a value representing a “best guess” at the level of leaf material missing. These estimates can require considerable time and are subjective. The goal of this study was to design a low-cost system containing light sensors and a microcontroller that could remotely record and report long-term... P. Astillo, J. Maja, J. Greene |
2. Data Fusion of Imagery from Different Satellites for Global and Daily Crop MonitoringSatellite-based Crop Monitoring is an important tool for decision making of irrigation, fertilization, crop protection, damage assessment and more. To allow crop monitoring worldwide, on a daily basis, data fusion of images taken by different satellites is required. So far, most researches on data fusion focus on retrospective analysis, while advanced crop monitoring capabilities mandate the use of data in real time mode. Therefore, our project goals were: (1) to build a data-fusion online system... O. Beeri, R. Pelta, S. Mey-tal, J. Raz |
3. Detecting Variability in Plant Water Potential with Multi-Spectral Satellite ImageryIrrigation Intelligence is a practice of precise irrigation, with the goal of providing crops with the right amount of water, at the right time, for optimized yield. One of the ways to achieve that, on a global scale, is to utilize Landsat-8 and Sentinel-2 images, providing together frequent revisit cycles of less than a week, and an adequate resolution for detection of 1 ha plots. Yet, in order to benefit from these advantages, it is necessary to examine the information that can be extracted... O. Beeri, S. May-tal, R. Rud, Y. Raz, R. Pelta |
4. A Hyperlocal Machine Learning Approach to Estimate NDVI from SAR Images for Agricultural FieldsThe normalized difference vegetation index (NDVI) is a key parameter in precision agriculture used globally since the 1970s. The NDVI is sensitive to the biochemical and physiological properties of the crop and is based on the Red (~650 nm) and NIR (~850 nm) spectral bands. It is used as a proxy to monitor crop growth, correlates to the crop coefficient (Kc), leaf area index (LAI), crop cover, and more. Yet, it is susceptible to clouds and other atmospheric conditions which might alter... R. Pelta, O. Beeri, T. Shilo, R. Tarshish |
5. Integration of Unmanned Aerial Systems Images and Yield Monitor in Improving Cotton Yield EstimationThe yield monitor is one of the most adopted precision agriculture technologies because it generates dense yield data to quantify the spatial variability of crop yield as a basis for site-specific management. However, yield monitor data has various errors that prevent proper interpretation and precise field management. The objective of this study was to evaluate the application of unmanned aerial systems (UAS) images in improving cotton yield monitor data. The study was conducted in a dryland... H. Gu, W. Guo |
6. Evaluation of Unmanned Aerial Vehicle Images in Estimating Cotton Nitrogen ContentEstimating crop nitrogen content is a critical step for optimizing nitrogen fertilizer application. The objective of this study was to evaluate the application of UAV images in estimating cotton (Gossypium hirsutum L.) N content. This study was conducted in a dryland cotton field in Garza County, Texas, in 2020. The experiment was implemented as a randomized complete block design with three N rates of 0, 34, and 67 kg N ha-1. A RedEdge multispectral sensor was used to acquire... R. Karn, H. Gu, O. Adedeji, W. Guo |
7. Estimation of Cotton Biomass Using Unmanned Aerial Systems and Satellite-based Remote SensingSatellite and unmanned aerial system (UAS) images are effective in monitoring crop growth at various spatial, temporal, and spectral scales. The objective of the study was to estimate cotton biomass at different growth stages using vegetation indices (VIs) derived from UAS and satellite images. This research was conducted in a cotton field in Hale County, Texas, in 2021. Data collected include 54 plant samples at different locations for three dates of the growing season. Multispectral images from... O.I. Adedeji, B.P. Ghimire, H. Gu, R. Karn, Z. Lin, W. Guo |
8. Multi-sensor Imagery Fusion for Pixel-by-pixel Water Stress MappingEvaluating water stress in agricultural fields is fundamental in irrigation decision-making, especially mapping the in-field water stress variability as it allows real-time detection of system failures or avoiding yield loss in cases of unplanned water stress. Water stress mapping by remote sensing imagery is commonly associated with the thermal or the short-wave-infra-red (SWIR) bands. However, integration of multi-sensors imagery such as radar imagery or sensors with only visible and near-infra-red... O. Beeri, R. Pelta, Z. Sade, T. Shilo |