Proceedings
Authors
| Filter results7 paper(s) found. |
|---|
1. Automatic Remote Image Processing For Agriculture Uses Through Specific SoftwareAbstract ... D. Gómez-candón, J.J. Caballero-novella, J.M. Peña-barragán, M. Jurado-expósito, F. López-granados, L. Garcia-torres, A.I. Decastro |
2. Comparison Of Management Zones Generated By The K-Means And Fuzzy C-Means MethodsThe generation of Management Zones (MZ) is an economic alternative to make viable the precision agriculture (RODRIGUES & ZIMBACK, 2002) because they work as operation units for the inputs localized application and as soil and culture sample indicators. For the field division in... E. Souza, K. Schenatto, F. Rodrigues, D. Rocha, C. Bazzi |
3. Precision Nutrient Management For Enhancing The Yield Of Groundnut In Peninsular IndiaGroundnut is an important oil seed crop grown in an area of around 8 lakh hectares in Karnataka state of India under rainfed conditions. In these situations farmers applied inadequate fertilizer without knowing the initial nutrient status of the soil which resulted in low nutrient use efficiency that intern lead to low productivity of groundnut in these areas. Soil fertility deterioration due to... M. Giriyappa, T. Sheshadri, D. Hanumanthappa, M. Shankar, S.B. Salimath, T. Rudramuni, N. Raju, N. Devakumar, G. Mallikaarjuna, M.T. Malagi, S. Jangandi |
4. Active Canopy Sensors for the Detection of Non-Responsive Areas to Nitrogen Application in WheatActive canopy sensors offer accurate measurements of crop growth status that have been used in real time to estimate nitrogen (N) requirements. NDVI can be used to determine the absolute amount of fertilizer requirement, or simply to distribute within the field an average rate defined by decision models using other diagnostics. The objective of this work was to evaluate the capacity of active canopy sensors to determine yield and N application requirements within a site at jointing stage (Feeks... A.G. Berger, E. Hoffman, N. Fassana, F. Alfonso |
5. Autonomous Mapping of Grass-Clover Ratio Based on Unmanned Aerial Vehicles and Convolutional Neural NetworksThis paper presents a method which can provide support in determining the grass-clover ratio, in grass-clover fields, based on images from an unmanned aerial vehicle. Automated estimation of the grass-clover ratio can serve as a tool for optimizing fertilization of grass-clover fields. A higher clover content gives a higher performance of the cows, when the harvested material is used for fodder, and thereby this has a direct impact on the dairy industry. An android application... D. Larsen, S. Skovsen, K.A. Steen, K. Grooters, O. Green, R.N. Jørgensen, J. Eriksen |
6. Data Gator: a Provisionless Network Solution for Collecting Data from Wired and Wireless SensorsAdvances in wireless sensor technology and data collection in precision agriculture enable farmers and researchers to understand operational and environmental dynamics. These advances allow the tracking of water usage, temperature variation, soil pH, humidity, sunlight penetration, and other factors which are crucial for trend prediction and analysis. Capitalizing on this advancement, however, requires data collection infrastructure using large and varied sensor networks. Adoption and implementation... G. Wells, J. Shovic, M. Everett |
7. Recovery Mechanism for Real-time Precision Agriculture Sensor Networks: a Case StudyVariable rate technologies are lagging behind other precision agriculture technologies in terms of farmer adoption, and sensor networks have been identified as a necessary step to implement these improvements. However, sensor networks face many issues in terms of cost, flexibility, and reliability. In rugged outdoor environments, it cannot be assumed that a sensor network will maintain constant connectivity to a monitoring interface, even if data is still being collected onsite. This paper presents... L. Hunt, M. Everett, J. Shovic |