Proceedings
Authors
| Filter results13 paper(s) found. |
|---|
1. The Effect of Leaf Orientation on Spray Retention on BlackgrassSpray application efficiency depends on the pesticide application method as well as target properties. A wide range of drop impact angles exists during the spray application process because of drop trajectory and the variability of the leaf orientation. As the effect of impact angle on retention is still poorly documented, laboratory studies were conducted... F. Lebeau, M. Massinon, P. Maréchal, H. Boukhalfa |
2. Detection Of Fruit Tree Water Status In Orchards From Remote Sensing Thermal ImageryIn deciduous fruit trees there is a growing need of using water status indicators for scheduling irrigation and adopt regulated deficit irrigation (RDI) strategies taking into account spatial variability of orchards. RDI strategies have been successfully adopted for many fruit trees as a means for reducing water use and because yield and quality at harvest are not sensitive to water stress at some developmental stages. Although water status is generally monitored by measuring tree... P.J. Zarco-tejada, V. Gonzalez-dugo, J. Girona, E. Fereres, J. Bellvert |
3. 3-Dimension Reconstruction Of Cactus Using Multispectral ImagesUsing 3D reconstruction result to investigate plant morphology has been a focus of virtual plant. And multispectral imaging has proved to carried biological information in quite a lot work. This paper present a idea to investigate chlorophyll spatial variability of cactus using a bunch of multispectral images. 46 multispectral images are taken at equally distributed angles surrounding the tree and have over 80% overlap. Structure from motion approach has been used... F. Liu, Y. He, Y. Zhang, L. Tan, Y. Zhang, L. Jiang |
4. Small UAS Integrated Sensing Tools for Abiotic Stress Monitoring in Irrigated Pinto BeansPrecision agriculture is a practical approach to maximize crop yield with optimal use of rapidly depleting natural resources. Availability of specific and high resolution crop data at critical growth stages is a key for real-time data driven decision support for precision agriculture management during the production season. The goal of this study was to evaluate the feasibility of using small unmanned aerial system (UAS) integrated remote sensing tools to monitor the abiotic stress of eight irrigated... L. Khot, J. Zhou, R. Boydston, P.N. Miklas, L. Porter |
5. Spatial Variability of Optimized Herbicide Mixtures and DosagesDriven by 25 years of Danish, political 'pesticide action plans', aiming at reducing the use of pesticides, a Danish Decision Support System (DSS) for Integrated Weed Management (IWM) has been constructed. This online tool, called ‘IPMwise’ is now in its 4th generation. It integrates the 8 general IPM-principles as defined by the EU. In Denmark, this DSS includes 30 crops, 105 weeds and full assortments of herbicides. Due to generic qualities in both the integrated... P. Rydahl, R.N. Jorgensen, M. Dyrmann, N. Jensen, M.D. Sorensen, O.M. Bojer, P. Andersen |
6. Using an Unmanned Aerial Vehicle with Multispectral with RGB Sensors to Analyze Canola Yield in the Canadian PrairiesIn 2017 canola was planted on 9 million hectares in Canada surpassing wheat as the most widely planted crop in Canada. Saskatchewan is the dominant producer with nearly 5 million hectares planted in 2017. This crop, seen both as one of the highest-yielding and most profitable, is also one of most expensive and input-intensive for producers on the Canadian Prairies. In this study, the effect of natural and planted shelterbelts on canola yield was compared with canola yield... K. Hodge, L. Bainard, A. Smith, F. Akhter |
7. Knowledge-based Approach for Weed Detection Using RGB ImageryA workflow was developed to explore the potential use of Phase One RGB for weed mapping in a herbicide efficacy trial in wheat. Images with spatial resolution of 0.8 mm were collected in July 2020 over an area of nearly 2000 square meters (66 plots). The study site was on a research farm at the University of Saskatchewan, Canada. Wheat was seeded on June 29, 2020, at a rate of 75 seeds per square meter with a row spacing of 30.5 cm. The weed species seeded in the trial were kochia, wild oat, wild... T. Ha, K. Aldridge, E. Johnson, S.J. Shirtliffe, S. Ryu |
8. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and IndianaPrecision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minnesota.... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor |
9. A Decision-support Tool to Optimize Mid-season Corn Nitrogen Fertilizer Management from Red, Green, Blue SUAS ImagesCorn receives more nitrogen (N) fertilizer per unit area than any other row crop and optimized soil fertility management is needed to help maximize farm profitability. In Arkansas, N fertilizer for corn is delivered in two- or three-split applications. Three-split applications may provide a better match to crop needs and contribute to minimizing yield loss from N deficiency. However, the total amounts are selected based on soil texture and yield goal without accounting for early-season losses... A. Poncet, T. Bui, W. France, T. Roberts, L. Purcell, J. Kelley |
10. Prescription Map Creation for Optimal Variable-rate Seeding in Arkansas FieldsSoybean seeding rate selection in Arkansas depends on cultivar, planting date, and soil characteristics. Guidelines were developed to maximize profitability from whole field management and little information is available to optimize smaller-scale management. Nevertheless, Arkansas cropland is expected to be a good candidate for variable-rate seeding (VRS) because of heterogeneous soil parent materials, large field sizes, and added spatial variability introduced by the normalization of land-leveling,... W. France, A. Poncet, U. Sigdel, J. Ross |
11. Machine Learning Approach to Study the Effect of Weather and Proposed Climate Change Scenarios on Variability in the Ohio Corn and Soybean YieldClimate is one of the primary factors that affects agricultural production. Climate change and extreme weather events have raised concerns about its effect on crop yields. Climate change patterns affect the crop yield in many ways including the length of the growing season, planting and harvest time windows, precipitation amount and frequency, and the growing degree days. It is important to analyze the effect of climate change on yield variability for a better understanding of the effect... R. Dhillon, G. Takoo |
12. Effects of Crop Rotation on In-season Estimation of Optimal Nitrogen Rates for Corn Based on Proximal and Remote Sensing DataA remote sensing and calibration strip-based precision nitrogen (N) management (RS-CS-PNM) strategy has been developed by the Precision Agriculture Center at the University of Minnesota to provide in-season N recommendation rates based on satellite imagery. This strategy involves the application of multiple N rates before planting and the identification of the agronomic optimum N rate (AONR) at V7-V8 growth stages using normalized difference vegetation index (NDVI) calculated using satellite imagery.... A.C. Morales, D. . Quinn, K. Mizuta, Y. Miao |
13. Using Remote Sensing to Evaluate Cover Crop Performance and Plan Variable Rate ManagementThe adoption of cover crops (CC) in row-crop production, particularly in states like Indiana, has surged due to their recognized benefits in nutrient scavenging, soil health improvement, and erosion prevention. However, the spatial and temporal dynamics of CC performance pose challenges for efficient assessment and management. Traditional methods of quantifying CC production involve labor-intensive and time-consuming processes, creating a lag between data collection and decision-making for farmers.... S.A. Rubaino sosa, D. . Quinn, S. Armstrong |