Proceedings

Find matching any: Reset
Parrish, J
Lan, Y
Payero, J.O
Linz, A
Laboski, C
Emamalizadeh, S
Koszinski, S
Add filter to result:
Authors
Ruckelshausen, A
Alheit, K.V
Busemeyer, L
Klose, R
Linz, A
Moeller, K
Rahe, F
Thiel, M
Trautz, D
Weiss, U
Hertzberg, J
Ruckelshausen, A
Wunder, E
Linz, A
Khalilian, A
Qiao, X
Payero, J.O
Maja, J.M
Privette, C.V
Han, Y.J
Ransom, C.J
Bean, M
Kitchen, N
Camberato, J
Carter, P
Ferguson, R.B
Fernandez, F.G
Franzen, D.W
Laboski, C
Nafziger, E
Sawyer, J
Shanahan, J
Luck, J
Parrish, J
Thompson, L
Krienke, B
Glewen, K
Ferguson, R.B
Lan, Y
Huang, Y
Martin, D.E
Hoffmann, W.C
Fritz, B.K
López, J.D
Kitchen, N.R
Yost, M.A
Ransom, C.J
Bean, G
Camberato, J
Carter, P
Ferguson, R
Fernandez, F
Franzen, D
Laboski, C
Nafziger, E
Sawyer, J
Pätzold, S
Heggemann, T
Leenen, M
Koszinski, S
Schmidt, K
Welp, G
Mazzoleni, R
Vinzio, F
Emamalizadeh, S
Allegro, G
Filippetti, I
Baroni, G
Topics
Sensor Application in Managing In-season Crop Variability
Precision Horticulture
Remote Sensing Applications in Precision Agriculture
Sensor Application in Managing In-season Crop Variability
Remote Sensing Application / Sensor Technology
In-Season Nitrogen Management
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Precision Agriculture for Sustainability and Environmental Protection
Type
Oral
Poster
Year
2010
2014
2016
2008
2018
2024
Home » Authors » Results

Authors

Filter results9 paper(s) found.

1. Sensor And System Technology For Individual Plant Crop Scouting

Sensor and system technologies are key components for automatic treatment of individual plants as well as for plant phenotyping in field trials. Based on experiences in research and application of sensors in agriculture the authors have developed phenotyping platforms for field applications including sensors, system and software development and application-specific mountings.   Sensor and data fusion have a high potential by compensating varying selectivities... A. Ruckelshausen, K.V. Alheit, L. Busemeyer, R. Klose, A. Linz, K. Moeller, F. Rahe, M. Thiel, D. Trautz, U. Weiss

2. Autonomous Service Robots For Orchards And Vineyards: 3D Simulation Environment Of Multi Sensor-Based Navigation And Applications

In order to fulfill economical as well as ecological boundary conditions information technologies and sensor are increasingly gaining importance in horticulture.  In combination with the reduced availability of human workers automation technologies thus play a key role in the international competition in vinicultures and orchards and have the potential to reduce the costs as well as environmental impacts.   The authors are working in the... J. Hertzberg, A. Ruckelshausen, E. Wunder, A. Linz

3. Utilizing Space-based Technology for Cotton Irrigation Scheduling

Accurate soil moisture content measurements are vital to precision irrigation management. Electromagnetic sensors such as capacitance and time domain reflectometry have been widely used for measuring soil moisture content for decades. However, to estimate average soil moisture content over a large area, a number of ground-based in-situ sensors would need to be installed, which would be expensive and labor intensive. Remote sensing using the microwave spectrum (such as GPS signals) has been used... A. Khalilian, X. Qiao, J.O. Payero, J.M. Maja, C.V. Privette, Y.J. Han

4. Field-scale Nitrogen Recommendation Tools for Improving a Canopy Reflectance Sensor Algorithm

Nitrogen (N) rate recommendation tools are utilized to help producers maximize grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. This may result in excess N being lost to the environment or producers receiving decreased economic returns on yield. Canopy reflectance sensors are capable of capturing within-field variability, although the sensor algorithm recommendations may not always be as accurate... C.J. Ransom, M. Bean, N. Kitchen, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

5. Liquid Flow Control Requirements for Crop Canopy Sensor-Based N Management in Corn: A Project SENSE Case Study

While on-farm adoption of crop canopy sensors for directing in-season nitrogen (N) application has been slow, research focused on these systems has been significant for decades. Much emphasis has been placed on developing and testing algorithms based on sensor output to predict N needs, but little information has been published regarding liquid flow control requirements on equipment used in conjunction with these sensing systems. Addition of a sensor-based system to a standard spray rate controller... J. Luck, J. Parrish, L. Thompson, B. Krienke, K. Glewen, R.B. Ferguson

6. Development of an Airborne Remote Sensing System for Aerial Applicators

An airborne remote sensing system was developed and tested for recording aerial images of field crops, which were analyzed for variations of crop health or pest infestation. The multicomponent system consists of a multi-spectral camera system, a camera control system, and a radiometer for normalizing images. To overcome the difficulties currently associated with correlating imagery data with what is actually occurring on the ground (a process known as ground truthing); a hyperspectral reflectance... Y. Lan, Y. Huang, D.E. Martin, W.C. Hoffmann, B.K. Fritz, J.D. López

7. Utilizing Weather, Soil, and Plant Condition for Predicting Corn Yield and Nitrogen Fertilizer Response

Improving corn (Zea mays L.) nitrogen (N) fertilizer rate recommendation tools should increase farmer’s profits and help mitigate N pollution. Weather and soil properties have repeatedly been shown to influence crop N need. The objective of this research was to improve publicly-available N recommendation tools by adjusting them with additional soil and weather information. Four N recommendation tools were evaluated across 49 N response trials conducted in eight U.S. states over three growing... N.R. Kitchen, M.A. Yost, C.J. Ransom, G. Bean, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer

8. Towards Universal Applicability of On-the-Go Gamma-Spectrometry for Soil Texture Estimation in Precision Farming by Using Machine Learning Applications

High resolution soil data are an essential prerequisite for the application of precision farming techniques. Sensor-based evaluation of soil properties may replace or at least reduce laborious, time-consuming and expensive soil sampling with subsequent measurements in the lab. Gamma spectrometry usually provides information that can be translated into topsoil texture data after calibration. This is because the natural content of the radioactive isotopes 40-K, 232-Th, and 238-U as well... S. Pätzold, T. heggemann, M. Leenen, S. Koszinski, K. Schmidt, G. Welp

9. Enhancing Precision Agriculture with Cosmic-ray Neutron Sensing: Monitoring Soil Moisture Dynamics and Its Impact on Grapevine Physiology

Precision agriculture has emerged as a transformative approach in modern viticulture, seeking to optimize vineyard management. Vineyard operations rely heavily on effective water management, especially in regions where water availability can significantly affect grape quality and yield. The relationship between soil moisture and grapevine physiology is however complex. Therefore, understanding these relationships is crucial for optimizing vineyard operations. Cosmic-ray neutron sensing (CRNS)... R. Mazzoleni, F. Vinzio, S. Emamalizadeh, G. Allegro, I. Filippetti, G. Baroni