Proceedings
Authors
| Filter results15 paper(s) found. |
|---|
1. Time Series Analysis of Somatic Cell Count from Dairy Herds in Minas Gerais - BrazilThe objective of this study was to analyze the temporal variation of somatic cell count (SCC) in milk of dairy cows from the state of Minas Gerais, Brazil. The Holstein Livestock Breeders Association of Minas Gerais provided data collected from 128 dairy farms located in the state of Minas Gerais between the years of 2000 and 2016. The database contains the SCC average of a total of 91,851 305-day lactations of Holstein animals. The annual SCC average was calculated as well as the percentage of... G.M. Dallago, D. Figueiredo, R. Santos, D. Santos, L. Guimarães, C. Santos, T. Castro, A. Santos, L. Otoni, J. Andrade |
2. Detecting Basal Stem Rot (BSR) Disease at Oil Palm Tree Using Thermal Imaging TechniqueBasal stem rot (BSR), caused by Ganoderma boninense is known as the most damaging disease in oil palm plantations in Southeast Asia. Ganoderma could reduce the productivity of oil palm plantations and potentially reduce the market value of palm oil in Malaysia. Early disease management of Ganoderma could prevent production losses and reduce the cost of plantation management. This study focuses on identifying the thermal properties of healthy and BSR-infected tree using a thermal imaging... S. Bejo, G. Abdol lajis, S. Abd aziz, I. Abu seman, T. Ahamed |
3. Data-Driven Agricultural Machinery Activity Anomaly Detection and ClassificationIn modern agriculture, machinery has become the one of the necessities in providing safe, effective and economical farming operations and logistics. In a typical farming operation, different machines perform different tasks, and sometimes are used together for collaborative work. In such cases, different machines are associated with representative activity patterns, for example, in a harvest scenario, combines move through a field following regular swaths while grain carts follow irregular paths... Y. Wang, A. Balmos, J. Krogmeier, D. Buckmaster |
4. Use Cases for Real Time Data in AgricultureAgricultural data of many types (yield, weather, soil moisture, field operations, topography, etc.) comes in varied geospatial aggregation levels and time increments. For much of this data, consumption and utilization is not time sensitive. For other data elements, time is of the essence. We hypothesize that better quality data (for those later analyses) will also follow from real-time presentation and application of data for it is during the time that data is being collected that errors can be... J. Krogmeier, D. Buckmaster, A. Ault, Y. Wang, Y. Zhang, A. Layton, S. Noel, A. Balmos |
5. Improving Winter Wheat Nitrogen Status Monitoring Using Proximal Canopy Sensing and Agrometeorological Information with Machine LearningTimely and accurate diagnosis of winter wheat nitrogen (N) status plays an important role in guiding precision N management. This study aims to combine proximal canopy sensing and agrometeorological information to establish a reliable winter wheat plant N concentration (PNC) monitoring model with seven machine learning (ML) algorithms (Random Forest Regression (RFR), Support Vector Regression (SVR), K-Nearest Neighbors Regression (KNNR), Partial Least Squares Regression (PLSR), Gradient Boosting... X. Chen, Y. Miao, K. Yu, Q. Chang, F. Li |
6. AI-based Pollinator Using CoreXY RobotThe declining populations of natural pollinators pose a significant ecological challenge, often attributed to the adverse effects of pesticides and intensive farming practices. To address the critical issue of pollination in the face of diminishing natural pollinators, we are pioneering an AI-based pollinator that utilizes a CoreXY pollination system. This solution aims to augment pollination efforts in agriculture, increasing yields and crop quality while mitigating the adverse impacts of pesticide... H. Kulhandjian, M. Kulhandjian, D. Rocha, B. Bennett |
7. AI-based Precision Weed Detection and EliminationWeeds are a significant challenge in agriculture, competing with crops for resources and reducing yields. Addressing this issue requires efficient and sustainable weed elimination systems. This paper presents a comprehensive overview of recent advancements in weed elimination system development, focusing on innovative technologies and methodologies. Specifically, it details the development and integration of a weed detection and elimination system based on the CoreXY architecture, implemented... H. Kulhandjian, M. Kulhandjian, D. Rocha, B. Bennett |
8. AI-based Fruit Harvesting Using a Robotic ArmFruit harvesting stands as a pivotal and delicate process within the agricultural industry, demanding precision and efficiency to ensure both crop quality and overall productivity. Historically reliant on manual labor, this labor-intensive endeavor has taken a significant leap forward with the advent of autonomous jointed robots and Artificial Intelligence (AI). Our project aims to usher in a new era in fruit harvesting, leveraging advanced technology to perform this essential task autonomously... H. Kulhandjian, N. Amely, M. Kulhandjian |
9. Data-driven Agriculture and Sustainable Farming: Friends or Foes?Sustainability in our food and fiber agriculture systems is inherently knowledge intensive. It is more likely to be achieved by using all the knowledge, technology, and resources available, including data-driven agricultural technology and precision agriculture methods, than by relying entirely on human powers of observation, analysis, and memory following practical experience. Data collected by sensors and digested by artificial intelligence (AI) can help farmers learn about synergies... O. Rozenstein, Y. Cohen, V. Alchanatis , K. Behrendt, D.J. Bonfil, G. Eshel, A. Harari, W.E. Harris, I. Klapp, Y. Laor, R. Linker, T. Paz-kagan, S. Peets, M.S. Rutter, Y. Salzer, J. Lowenberg-deboer |
10. OATSmobile: a Data Hub for Underground Sensor Communications and Rural IoTWireless Underground Sensor Networks (WUSNs) play a crucial role in precision agriculture by providing information about moisture levels, temperature, nutrient availability, and other relevant factors. However, the use of radio-frequency identification (RFID) devices for WUSNs has been relatively unexplored despite their benefits such as low power consumption. In this work, we develop a hardware platform, called OATSMobile, that enables radio-frequency identification (RFID) communications in WUSNs.... F.A. Castiblanco rubio, A. Arun, B. Lee, A. Balmos, S. Jha, J. Krogmeier, D.J. Love, D. Buckmaster |
11. Avena: an Event-driven Software Framework for Informed Decisions and Actions in Cropping SystemsInteroperability is one of the enabling factors of real-time communications and data exchange between asynchronous data actors. Interoperability can be attained by introducing events to systems that extract data from consumed ground-truth event streams that utilize application-specific structures. Events are specific occurrences happening at a particular time and place. Event-data are observations of phenomena, or actions, as seen by different systems in Internet of Things (IoT) deployments, independent... F.A. Castiblanco rubio, M. Basir, A. Balmos, J. Krogmeier, D. Buckmaster |
12. Use of Crop and Drought Spectral Indices to Support Harvest Decisions of Peanut Fields in AlabamaHarvest efficiency expressed in quantity and quality of peanut fields could increase if farmers are provided with tools to support harvest decisions. Peanut farmers still rely on a visual and empiric method to assess the right time of peanut maturity but this method does not account for within-field variability of crop growth and maturity. The integration of spectral vegetation indices to assess drought, soil moisture, and crop growth to predict peanut maturity can help farmers strengthen decisions... M.F. Oliveira, B.V. Ortiz, E. Hanyabui, J.B. Costa souza, A. Sanz-saez, S. Luns hatum de almeida , C. Pilcon, G. Vellidis |
13. Design of an Autonomous Ag Platform Capable of Field Scale Data Collection in Support of Artificial IntelligenceThe Pivot+ Array is intended to serve as an innovative, multi-user research platform dedicated to the autonomous monitoring, analysis, and manipulation of crops and inputs at the plant scale, covering extensive areas. It will effectively address many constraints that have historically limited large-scale agricultural sensor and robotic research. This achievement will be made possible by augmenting the well-established center pivot technology, known for its autonomy, with robust power infrastructure,... S. Jha, J. Krogmeier, D. Buckmaster, D.J. Love, R.H. Grant, M. Crawford, C. Brinton, C. Wang, D. Cappelleri, A. Balmos |
14. Enabling Field-level Connectivity in Rural Digital Agriculture with Cloud-based LoRaWANThe widespread adoption of next-generation digital agriculture technologies in rural areas faces a critical challenge in the form of inadequate field-level connectivity. Traditional approaches to connecting people fall short in providing cost-effective solutions for many remote agricultural locations, exacerbating the digital divide. Current cellular networks, including 5G with millimeter wave technology, are urban-centric and struggle to meet the evolving digital agricultural needs, presenting... Y. Zhang, J. Bailey, A. Balmos, F.A. Castiblanco rubio, J. Krogmeier, D. Buckmaster, D. Love, J. Zhang, M. Allen |
15. Advanced Classification of Beetle Doppelgängers Using Siamese Neural Networks and Imaging TechniquesThe precise identification of beetle species, especially those that have similar macrostructure and physical characteristics, is a challenging task in the field of entomology. The term "Beetle Doppelgängers" refers to species that exhibit almost indistinguishable macrostructural characteristics, which can complicate tasks in ecological studies, conservation efforts, and pest management. The core issue resides in their striking similarity, frequently confusing both experts and automated... P.R. Armstrong, L.O. Pordesimo, K. Siliveru, A.R. Gerken, R.O. Serfa juan |