Proceedings
Authors
| Filter results6 paper(s) found. |
|---|
1. Compatible ISOBUS Applications Using a Computational Tool for Support the Phases of the Precision Agriculture Cycle... W.C. Lopes, G. Domingues, R.V. Sousa, A.J. Porto, R.Y. Inamasu, R.R. Pereira |
2. Use of Field Diagnostic Tools for Top Dressing Nitrogen Recommendation When Organic Manures Are Applied in Humid Mediterranean ConditionsNitrogen is often applied in excessive quantities, causing nitrogen losses. In recent years, the management of large quantities of manure and slurry compounds has become a challenge. The aim of this study was to assess the usefulness of the proxy tools Yara N-testerTMand RapidScan CS-45 for diagnosing the N nutritional status of wheat crops when farmyard manures were applied. Our second objective was to start designing a N fertilization strategy based on these measurements. To achieve these objectives,... A. Castellón, A. Aizpurua, M. Aranguren |
3. Fruit Fly Electronic Monitoring SystemInsects are a constant threat to agriculture, especially the cultivation of various types of fruits such as apples, pears, guava, etc. In this sense, it is worth mentioning the Anastrepha genus flies (known as fruit fly), responsible for billionaire losses in the fruit growing sector around the world, due to the severity of their attack on orchards. In Brazil, this type of pests has been controlled in most product areas by spraying insecticides, which due to the need for prior knowledge regarding... C.L. Bazzi, F.V. Silva, L. Gebler, E.G. Souza, K. Schenatto, R. Sobjak, R.S. Dos santos, A.M. Hachisuca, F. Franz |
4. Deep Learning to Estimate Sorghum Yield with Uncrewed Aerial System ImageryIn the face of growing demand for food, feed, and fuel, plant breeders are challenged to accelerate yield potential through quick and efficient cultivar development. Plant breeders often conduct large-scale trials in multiple locations and years to address these goals. Sorghum breeding, integral to these efforts, requires early, accurate, and scalable harvestable yield predictions, traditionally possible only after harvest, which is time-consuming and laborious. This research harnesses high-throughput... M.A. Bari, A. Bakshi, T. Witt, D. Caragea, K. Jagadish, T. Felderhoff |
5. Cyberinfrastructure for Machine Learning Applications in Agriculture: Experiences, Analysis, and VisionAdvancements in machine learning algorithms and GPU computational speeds over the last decade have led to remarkable progress in the capabilities of machine learning. This progress has been so much that, in many domains, including agriculture, access to sufficiently diverse and high-quality datasets has become a limiting factor. While many agricultural use cases appear feasible with current compute resources and machine learning algorithms, the lack of software infrastructure for collecting,... L. Waltz, S. Khanal, S. Katari, C. Hong, A. Anup, J. Colbert, A. Potlapally, T. Dill, C. Porter, J. Engle, C. Stewart, H. Subramoni, R. Machiraju, O. Ortez, L. Lindsey, A. Nandi |
6. Driving Growth Through Precision Agriculture: the Evolution of the Nebraska On-farm Research NetworkThe Nebraska On-Farm Research Network (NOFRN), allows farmers to answer production, profitability and sustainability questions in their own field. The University of Nebraska (USA) sponsors the NOFRN and provides technical support in the experimental design, execution, data analysis and results dissemination. In recent years, precision agriculture technologies have expanded network capabilities through an increasing number of experiments and provided new avenues for data analyses. The goal is... G. Balboa, B. Tobaldo, T. Lexow, J.D. Luck |