Proceedings

Find matching any: Reset
Yang, X
Lemus, S
Bisognin, M.B
Christensen, A
Add filter to result:
Authors
Sun, C
Ji, Z
Qian, J
Li, M
Zhao, L
Li, W
Zhou, C
Du, X
Xie, J
Wu, T
Qu, L
Hao, L
Yang, X
Yang, X
Sun, C
Qian, J
Ji, Z
Qiao, S
Chen, M
Zhao, C
Li, M
Yang, X
Li, M
Sun, C
Qian, J
Ji, Z
Chen, M
Li, M
Qian, J
Li, W
Wang, Y
Zhang, Y
Yang, X
Amado, T.J
Santi, A.L
Corassa, G.M
Bisognin, M.B
Gaviraghi, R
Pires, J.L
Rai, N
Zhang, Y
Quanbeck, J
Christensen, A
Sun, X
Scudiero, E
Nugent, C.I
Ng, C
Jones, N
Azzam, T
Salunga, N.G
Lemus, S
Topics
Information Management and Traceability
Precision Crop Protection
Information Management and Traceability
Precision Horticulture
Spatial Variability in Crop, Soil and Natural Resources
Big Data, Data Mining and Deep Learning
Education of Precision Agriculture Topics and Practices
Type
Poster
Oral
Year
2012
2010
2014
2016
2022
2024
Home » Authors » Results

Authors

Filter results7 paper(s) found.

1. Traceability And Management Information System Of Agricultural Product Quality Safety In China

Agricultural product quality safety is the hot topic in the world. From the technical view, the agricultural production management and traceability are the key measurement for insuring the quality safety. From 2005 until now, we have been investigating... X. Yang, M. Li, C. Sun, J. Qian, Z. Ji

2. Towards a Multi-Source Record Keeping System for Agricultural Product Traceability

Agricultural production record keeping is the basis of traceability system. To resolve the problem including single method of information acquisition, weak ability of real-time monitoring and low credibility of history information in agricultural production process, the... C. Sun, Z. Ji, J. Qian, M. Li, L. Zhao, W. Li, C. Zhou, X. Du, J. Xie, T. Wu, L. Qu, L. Hao, X. Yang

3. Modeling and Decision Support System for Precision Cucumber Protection in Greenhouses

The plant disease... X. Yang, C. Sun, J. Qian, Z. Ji, S. Qiao, M. Chen, C. Zhao, M. Li

4. Study On The Automatic Monitoring Technology For Fuji Fruit Color Based On Machine Vision

  Fruit color is one of the important indicators of quality and commodities. Three kinds of the traditional methods are used to evaluate fruit color, including artificial visual identification, fruit standard color cards and color measurement instrument. These methods are needed to be conducted in the field by persons, which are time-consuming and labored, and also difficult to obtain the dynamic color information of the target fruits in the growth process. This study developed... M. Chen, M. Li, J. Qian, W. Li, Y. Wang, Y. Zhang, X. Yang

5. Response of Soybean Cultivars According to Management Zones in Southern Brazil

The positioning of soybean cultivars on fields according your environmental response is new strategy to obtain high soybean yields. The aim of this study was to investigate the agronomic response of six soybean cultivars according management zones in Southern Brazil. The study was conducted in 2013/2014 and in two fields located in Boa Vista das Missões, Rio Grande do Sul, Brazil. The experimental design was a randomized complete block in a factorial arrangement (3x6), with three management... T.J. Amado, A.L. Santi, G.M. Corassa, M.B. Bisognin, R. Gaviraghi, J.L. Pires

6. Spotweeds: a Multiclass UASs Acquired Weed Image Dataset to Facilitate Site-specific Aerial Spraying Application Using Deep Learning

Unmanned aerial systems (UASs)-based spot spraying application is considered a boon in Precision Agriculture (PA). Because of spot spraying, the amount of herbicide usage has reduced significantly resulting in less water contamination or crop plant injury. In the last demi-decade, Deep Learning (DL) has displayed tremendous potential to accomplish the task of identifying weeds for spot spraying application. Also, most of the ground-based weed management technologies have relied on DL techniques... N. Rai, Y. Zhang, J. Quanbeck, A. Christensen, X. Sun

7. Cultivating Future Leaders in Sustainable Agriculture: Insights from the Digital Agriculture Fellowship Program at the University of California, Riverside

Funded by USDA's National Institute of Food and Agriculture’s Sustainable Agricultural Systems Program and housed at the University of California, Riverside (UCR), the Digital Agriculture Fellowship (DAF) aims at equipping undergraduate students with the knowledge and experience necessary to meet the agricultural challenges posed by climate change and sustainability concerns. The program was established in 2020 and will be funded through 2026. Activities span over fifteen months for... E. Scudiero, C.I. Nugent, C. Ng, N. Jones, T. Azzam, N.G. Salunga, S. Lemus