Proceedings
Authors
| Filter results3 paper(s) found. |
|---|
1. A New Approach to Yield Map CreationOne of the barriers to using yield maps as a data layer in precision agriculture activities is that the maps being generated to day are not very accurate in representing what really happened in field. Numerous data errors in the way the data is collected, poor calibration habits on the part of operators... C. Romier, M. Hyrien, D. Lamker |
2. Utilizing Weather, Soil, and Plant Condition for Predicting Corn Yield and Nitrogen Fertilizer ResponseImproving corn (Zea mays L.) nitrogen (N) fertilizer rate recommendation tools should increase farmer’s profits and help mitigate N pollution. Weather and soil properties have repeatedly been shown to influence crop N need. The objective of this research was to improve publicly-available N recommendation tools by adjusting them with additional soil and weather information. Four N recommendation tools were evaluated across 49 N response trials conducted in eight U.S. states over three growing... N.R. Kitchen, M.A. Yost, C.J. Ransom, G. Bean, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer |
3. Spotweeds: a Multiclass UASs Acquired Weed Image Dataset to Facilitate Site-specific Aerial Spraying Application Using Deep LearningUnmanned aerial systems (UASs)-based spot spraying application is considered a boon in Precision Agriculture (PA). Because of spot spraying, the amount of herbicide usage has reduced significantly resulting in less water contamination or crop plant injury. In the last demi-decade, Deep Learning (DL) has displayed tremendous potential to accomplish the task of identifying weeds for spot spraying application. Also, most of the ground-based weed management technologies have relied on DL techniques... N. Rai, Y. Zhang, J. Quanbeck, A. Christensen, X. Sun |