Proceedings

Find matching any: Reset
Sulastri, N
Shang, J
Silveira, R.R
Schueller, J.K
Abd-Elrahman, A
Stenger, J
Yogananda, S
Weckler, P
Stenberg, B
Ferguson, R.B
Longchamps, L
Perulli, G
Solie, J.B
Fulton, J
Kulmany, I.M
Pires, P.S
E. Flores, A
Sharda, A
Berghaus, A
Shaw, J.N
Gray, G.R
Olivier, G
Kemerer, A.C
Guo, J
Irvine, L
Shirtliffe, S
Add filter to result:
Authors
Naser, M.A
Khosla, R
Haley, S
Reich, R
Longchamps, L
Moragues, M
Buchleiter, G.W
McMaster, G.S
Khosla, R
Westfall, D.G
Longchamps, L
Khosla, R
Longchamps, L
Panneton, B
Simard, M
Leroux, G.D
Longchamps, L
Longchamps, L
Panneton, B
Westfall, D.G
Khosla, R
Marine, L
Manon, M
Claire, G
Laurent, P
Mostafa, F
Zoran, C
Naima, B
Sébastien, D
Olivier, G
Shiratsuchi, L
Lutz, C.C
Ferguson, R.B
Adamchuk, V.I
Adamchuk, V.I
Pan, L
Ferguson, R.B
Shaver, T
Schmer, M
Irmak, S
Van Donk, S
Wienhold, B
Jin, V
Bereuter, A
Francis, D
Rudnick, D
Ward, N
Hendrickson, L
Ferguson, R.B
Adamchuk, V.I
Sulastri, N
Shibusawa, S
Kodaira, M
Xu, G
Chen, L
Zhang, R
Guo, J
Wang, Y
Adamchuk, V.I
Ferguson, R.B
Longchamps, L
Panneton, B
Simard, M
Theriault, R
Roger, T
Longchamps, L
Panneton, B
Leroux, G.D
Simard, M
Theriault, R
Shiratsuchi, L
Ferguson, R.B
Shanahan, J.F
Adamchuk, V.I
Slater, G
Norwood, S.H
Fulton, J.P
Winstead, A.T
Shaw, J.N
Rodekohr, D
Brodbeck, C.J
Macy, T
Sharda, A
Luck, J.D
Fulton, J.P
Shearer, S.A
Shearer, S.A
Mullenix, D
Vanacht, M
Guo, J
Chen, L
wang, X
Zhang, R
Zotarelli, L
Zhang, R
Chen, L
Guo, J
Warren, J.G
Warren, J.G
Moss, J.Q
Bell, G.E
Solie, J.B
Stone, M.L
Martin, D.L
Payton, M.E
McNeill, D
Bishop-Hurley, G.J
Irvine, L
Freeman, M
Bellenguez, R
Sharda, A
Luck, J.D
Fulton, J.P
Shearer, S.A
McDonald, T.P
Mullenix, D
Luck, J.D
Sharda, A
Pitla, S.K
Fulton, J.P
Shearer, S.A
Dong, T
Shang, J
Meng, J
Liu, J
Stevens, L.J
Ferguson, R.B
Franzen, D.W
Kitchen, N.R
Karkee, M
Zhang, Q
Sharda, A
Kemerer, A.C
Albarenque, S.M
Melchiori, R.J
Ciampitti, I.A
Shroyer, K
Prasad, V
Sharda, A
Stamm, M.J
Wang, H
Price, K
Mangus, D
Mangus, D.L
Sharda, A
Maurer, J.L
Griffin, T.W
Sharda, A
Siegfried, J
Khosla, R
Longchamps, L
Bean, G
Kitchen, N.R
Franzen, D.W
Miles, R.J
Ransom, C
Scharf, P
Camberato, J
Carter, P
Ferguson, R.B
Fernandez, F.G
Laboski, C
Nafziger, E
Sawyer, J
Shanahan, J
Patto Pacheco, E
Liu, J
Longchamps, L
Khosla, R
Weckler, P
Morris, C
Arnall, B
Alderman, P
Kidd, J
Sutherland, A
Weckler, P
Wang, N
Zhai, C
Zhang, L
Luo, B
Long, J
Taylor, R
Longchamps, L
Khosla, R
Reich, R
T, S
giriyappa, M
Hanumanthappa, D
Dr., N
K, S
Yogananda, S
Kiran, A
Balboa, G
Varela, S
Ciampitti, I
Duncan, S
Maxwell, T
Shoups, D
Sharda, A
Bennett, J
Wilson, C
Sharda, A
Griffin, T.W
Ransom, C.J
Bean, M
Kitchen, N
Camberato, J
Carter, P
Ferguson, R.B
Fernandez, F.G
Franzen, D.W
Laboski, C
Nafziger, E
Sawyer, J
Shanahan, J
Bastos, L
Ferguson, R.B
Sharda, A
Badua, S
Flippo, D
Ciampitti, I
Griffin, T.W
Luck, J
Parrish, J
Thompson, L
Krienke, B
Glewen, K
Ferguson, R.B
Cerri, D.G
Gray, G.R
Magalhães, P.S
Bresilla, K
Manfrini, L
Boini, A
Perulli, G
Morandi, B
Grappadelli, L.C
Gan, H
Lee, W.S
Alchanatis, V
Abd-Elrahman, A
Cheng, Z
Meng, J
Shang, J
Liu, J
Qian, B
Jing, Q
Colley III, R
Fulton, J
Douridas, N
Port, K
Colley III, R
Fulton, J
Virk, S
Hawkins, E
Bastos, L
Ferguson, R.B
Bouroubi, Y
Bugnet, P
Nguyen-Xuan, T
Bélec, C
Longchamps, L
Vigneault, P
Gosselin, C
Sharda, A
Badua, S
Ciampitti, I
Strasser, R
Griffin, T.W
de Azevedo, K.K
de Figueiredo, D.M
de Sousa, M.G
Dallago, G.M
Silveira, R.R
da Silva, L.D
Santos, R.A
de Azevedo, K.K
Figueiredo, D.M
de Sousa, M.G
Dallago, G.M
Silveira, R.R
da Silva, L.D
Rennó, L.N
Santos, R.A
de Azevedo, K.K
Figueiredo, D.M
Dallago, G.M
Vieira, J.A
Silveira, R.R
da Silva, L.D
Santos, R.A
Rennó, L.N
Pacheco, G.B
Colley III, R
Lin, Y
Fulton, J
Shearer, S
Lee, J
Fulton, J
Port, K
Colley III, R
Pomar, C
Andretta, I
Hauschild, L
Kipper, M
Pires, P.S
Phillippi, E
Khosla, R
Longchamps, L
Turk, P
Longchamps, L
Panneton, B
Tremblay, N
Kulmany, I.M
Benke, S
Bede, L
Pecze, R
Vona, V
Mandal, D
Siqueira, R.D
Longchamps, L
Khosla, R
Mayer, J
Flores, P
Stenger, J
Krys, K
Shirtliffe, S
Duddu, H
Ha, T
Attanayake, A
Johnson, E
Andvaag, E
Stavness, I
Li, D
Miao, Y
Fernández, .G
Kitchen, N.R
Ransom, C.
Bean, G.M
Sawyer, .E
Camberato, J.J
Carter, .R
Ferguson, R.B
Franzen, D.W
Franzen, D.W
Franzen, D.W
Franzen, D.W
Laboski, C.A
Nafziger, E.D
Shanahan, J.F
Longchamps, L
Zhou, C
Lee, W
Pourreza, A
Schueller, J.K
Liburd, O.E
Ampatzidis, Y
Zuniga-Ramirez, G
Mathew, J.J
Flores, P.J
Stenger, J
Miranda, C
Zhang, Z
Das, A.K
Sharda, A
Harsha Chepally, R
Alshihabi, O
Stenberg, B
Barron, J
Peiretti, J
Sharda, A
Badua, S
Javed, B
Cambouris, A
Duchemin, M
Longchamps, L
Basran, P.S
Arnold, S
Fenech, A
Karam, A
Lanza, P
Yore, A
Longchamps, L
Shirtliffe, S
Ha, T
Nketia, K
Cai, S
Xu, S
Zhang, D
Zhu, H
Longchamps, L
Weule, M
Hufnagel, E
Claussen, J
Berghaus, A
Burkhart, S
Noack, P
Gerth, S
Mandal, D
Longchamps, L
Khosla, R
Admasu, W.A
Zsebő, S
Kukorelli, G
Vona, V
Bede, L
Stencinger, D
Kovacs, A
Milics, G
Kulmany, I.M
Horváth, B
Hegedűs, G
Abdinoor, J.A
Singh, R
Sharda, A
Sharda, A
Harsha Chepally, R
Yore, A
Lanza, P
Longchamps, L
Sharda, A
Dua, A
Schapaugh, W
Hessel, R
Abon, J.O
Sharda, A
Kaushal, S
Sharda, A
Nketia, K
Ha, T
Fernando, H
Shirtliffe, S
van Steenbergen, S
Aryal, B
Sharda, A
Peiretti, J
Kulmany, I.M
Horváth, B
Kukorelli, G
Zsebő, S
Stencinger, D
Borbás, Z
Pecze, R
Bede, L
Varga, Z
Kósa, A
Pinke, G
Hashim, Z.K
Hegedűs, G
Abdinoor, J.A
Agampodi, G.S
Pokharel, P
Sharda, A
Gadhwal, M
Aryal, B
Piya, N.K
Sharda, A
Persch, J.R
Flippo, D
Harsha Chepally, R
Piya, N.K
Sharda, A
Flippo, D
Peiretti, J
Gigena, B
BAdua, S
Sharda, A
Lacerda, L
Miao, Y
Sharma, V
E. Flores, A
Kechchour, A
Lu, J
Dua, A
Sharda, A
Schapaugh, W
Hessel, R
Rai, S
Shende, K
Sharda, A
Kaloya, T
Sharda, A
Dalal, A
Dua, S
Sharda, A
Rai, S
Sharda, A
Berretta, B.G
Asgedom, H
Hehar, G
Willness, C
Anderson, W
Duddu, H
Mooleki, P
Schoenau, J
Khakbazan, M
Lemke, R
Derdall, E
Shang, J
Liu, K
Sulik, J
Karppinen, E
Mbakwe, I
Longchamps, L
Topics
Remote Sensing Applications in Precision Agriculture
Precision Nutrient Management
Precision Crop Protection
Guidance, Robotics, Automation, and GPS Systems
Sensor Application in Managing In-season Crop Variability
Proximal Sensing in Precision Agriculture
Precision A to Z for Practitioners
Spatial Variability in Crop, Soil and Natural Resources
Spatial Variability in Crop, Soil and Natural Resources
Engineering Technologies and Advances
Education and Training in Precision Agriculture
Precision Weed Management
Sensor Application in Managing In-season Crop Variability
Precision Nutrient Management
Precision Horticulture
Precision Livestock Management
Remote Sensing Applications in Precision Agriculture
Sensor Application in Managing In-season CropVariability
Precision Crop Protection
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Remote Sensing Applications in Precision Agriculture
Profitability, Sustainability and Adoption
Precision Nutrient Management
Unmanned Aerial Systems
Engineering Technologies and Advances
Precision Agriculture and Climate Change
Spatial Variability in Crop, Soil and Natural Resources
Decision Support Systems in Precision Agriculture
Sensor Application in Managing In-season Crop Variability
Engineering Technologies
Big Data, Data Mining and Deep Learning
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Site-Specific Nutrient, Lime and Seed Management
In-Season Nitrogen Management
On Farm Experimentation with Site-Specific Technologies
Farm Animals Health and Welfare Monitoring
Decision Support Systems
Precision Dairy and Livestock Management
Precision Horticulture
Land Improvement and Conservation Practices
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Precision Crop Protection
Applications of Unmanned Aerial Systems
ISPA Community: Nitrogen
On Farm Experimentation with Site-Specific Technologies
Big Data, Data Mining and Deep Learning
Precision Agriculture and Global Food Security
Robotics, Guidance and Automation
In-Season Nitrogen Management
On Farm Experimentation with Site-Specific Technologies
Precision Agriculture and Global Food Security
Geospatial Data
Precision Agriculture for Sustainability and Environmental Protection
Land Improvement and Conservation Practices
Artificial Intelligence (AI) in Agriculture
Scouting and Field Data collection with Unmanned Aerial Systems
Precision Crop Protection
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Digital Agriculture Solutions for Soil Health and Water Quality
Big Data, Data Mining and Deep Learning
Data Analytics for Production Ag
Wireless Sensor Networks and Farm Connectivity
Site-Specific Nutrient, Lime and Seed Management
Meeting
Type
Poster
Oral
Year
2012
2010
2014
2016
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results99 paper(s) found.

1. On The Go Soil Sensor For Soil Ec Mapping

This paper describes spatial variation maps of soil electrical conductivity (EC) obtained by both spectroscopic and capacitance methods using on the go soil sensor ( a real-time soil sensor -RTSS) SAS 1000, commercialized by Shibuya Kogyo Co. The experiments were conducted over a 2 year period on an experimental Hokkaido farm with an alluvial soil type. The comparison in soil EC records between the spectroscopy and the capacitance were also discussed. The spectroscopic approach used the soil... N. Sulastri, S. Shibusawa, M. Kodaira

2. Study On Application Of Wireless Sensor Networks For Precision Agriculture

  Abstract: The use of sensor network to achieve soil moisture real-time detection can provide the decision-making basis for precision agriculture. In this... G. Xu, L. Chen, R. Zhang, J. Guo, Y. Wang

3. Precision Agriculture Education Program In Nebraska

With the cost of agricultural inputs and the instability of commodity prices increasing, demand is growing for training in the essential skills needed to successfully implement site-specific crop management. This set of skills is uniquely interdisciplinary in nature. Thus, it is essential for potential users of precision agriculture to understand the basics of geodetic and electronic control equipment, principles of geographic information systems, fundamentals... V.I. Adamchuk, R.B. Ferguson

4. Sensing The Inter-row For Real-time Weed Spot Spraying In Conventionally Tilled Corn Fields

The spatial distribution of weeds is aggregated most of the time in crop fields. Site-specific management of weeds could result in economical and environmental benefits due to herbicide... L. Longchamps, B. Panneton, M. Simard, R. Theriault, T. Roger

5. Partial Weed Scouting For Exhaustive Real-time Spot Spraying Of Herbicides In Corn

Real-time spot spraying of weeds implies the use of plant detectors ahead of a sprayer. The range of weed spatial autocorrelation perpendicularly to crop rows is often greater than the space between the corn rows. To assess the possibility of using less than one plant detector scouting each inter-row, a one hectare field was entirely sampled with ground pictures at the appropriate timing for weed spraying. Different ways of disposing the detectors ahead of the sprayer were virtually tested. Scouting... L. Longchamps, B. Panneton, G.D. Leroux, M. Simard, R. Theriault

6. Comparison Of Spectral Indices Derived From Active Crop Canopy Sensors For Assessing Nitrogen And Water Status

... L. Shiratsuchi, R.B. Ferguson, J.F. Shanahan, V.I. Adamchuk, G. Slater

7. A Case Study For Variable-rate Seeding Of Corn And Cotton In The Tennessee Valley Of Alabama

      Farmers have recently become more interested in implementing variable-rate seeding of corn and cotton in Alabama due to increasing seed costs and the potential to maximize yields site-specifically due to inherent field variability.  Therefore, an on-farm case study was conducted to evaluate the feasibility of variable-rate seeding for a corn and cotton rotation. ... S.H. Norwood, J.P. Fulton, A.T. Winstead, J.N. Shaw, D. Rodekohr, C.J. Brodbeck, T. Macy

8. Application Rate Stability When Implementing Automatic Section Control Technology On Agricultural Sprayers

Automatic section control (on and off) technology of sprayer boom sections is an intelligent solution to maximize spray application efficiency during field operations. This technology can reduce over-application of products. Spray controllers available with this technology attempt to maintain the set target rate by adjusting system flow rate based on ground speed and application width.  Therefore, as sections are turned on or off, the flow regulating hardware must respond to maintain... A. Sharda, J.D. Luck, J.P. Fulton, S.A. Shearer, S.A. Shearer, D. Mullenix, M. Vanacht

9. The Effect Of Variable-Rate Fertilizer Nitrogen Decision-Making On Winter Wheat

Precision ... J. Guo, L. Chen, X. Wang, R. Zhang, L. Zotarelli

10. Energy-efficient Wireless Sensor Network System For Soil Moisture Information Collecting

Collecting field soil moisture information is the foundation of auto-irrigation. This paper introduced a soil moisture information collecting system based on wireless sensor network (WSN) technology and with application background of automatic drip irrigation for cotton field. Firstly, application background was analyzed and application requirement was defined. The system worked together with a drip irrigation system in cotton field. After study, it was found that the output of soil moisture sensor... R. Zhang, L. Chen, J. Guo, J.G. Warren, J.G. Warren

11. Development Of A Precision Sensing Sprayer For The Application Of Nitrogen Fertilizer To Turfgrass

  Normalized difference vegetation index (NDVI) may be very useful for turfgrass managers to measure turf quality and obtain an indirect measurement of turf N status. The objective of this research was to develop a Nitrogen Fertilization Optimization Algorithm (NFOA) for use in a turfgrass variable rate N applicator on bermudagrass [Cynodon dactylon (L.) Pers] fairways and creeping bentgrass (Agrostis stolonifera L.) greens in Oklahoma. Plots (0.9 X 1.5 m)... J.Q. Moss, G.E. Bell, J.B. Solie, M.L. Stone, D.L. Martin, M.E. Payton

12. A Preliminary Evaluation Of Proximity Loggers To Detect Oestrus Behaviour In Grazing Dairy Cows

... D. Mcneill, G.J. Bishop-hurley, L. Irvine, M. Freeman, R. Bellenguez

13. Tip Flow Uniformity When Using Different Automatic Section Control Technologies During Field Operations

Automatic section control (ASC) technology provides a means to reduce double-coverage and application in unwanted areas thereby leading to input savings and improved environmental stewardship.  However, the impact of ASC on spray boom dynamics and tip flow uniformity are unknown. Therefore, a study was conducted to evaluate tip flow rate uniformity and control system response in maintaining target application rates during field operation. Field experiments were conducted using two self-propelled... A. Sharda, J.D. Luck, J.P. Fulton, S.A. Shearer, T.P. Mcdonald, D. Mullenix

14. Generating Herbicide Effective Application Rate Maps Based On GPS Position, Nozzle Pressure, And Boom Section Actuation Data Collected From Sprayer Control Systems

The application of pre- and post- emergence burn-down herbicides (i.e., glyphosate) continues to increase as producers attempt to reduce both negative environmental impacts from tillage and input costs from labor, machinery and materials.  The use of precision agriculture technologies such as automatic boom section control allows producers to reduce off-target application when applying herbicides.  While automatic boom section control has provided benefits, pressure differences across... J.D. Luck, A. Sharda, S.K. Pitla, J.P. Fulton, S.A. Shearer

15. Can Active Sensor Based NDVI Consistently Classify Wheat Genotypes?

ABSTRACT ... M.A. Naser, R. khosla, S. Haley, R. Reich, L. Longchamps, M. Moragues, G.W. buchleiter, G.S. Mcmaster

16. Early Detection of Corn N-Deficiency by Active Fluorescence Sensing in Maize

Globally, the agricultural nitrogen use efficiency (NUE) is no more than 40 %. This low efficiency comes with an agronomic, economic and environmental cost. By better management of spatial and temporal variability of crop nitrogen need, NUE can be improved. Currently available crop canopy sensors based on reflectance are capable... R. Khosla, D.G. Westfall, L. Longchamps

17. Comparing Sensing Platforms for Crop Remote Sensing

Remote sensing offers the possibility to obtain a rapid and non-destructive diagnosis of crop health status. This gives the opportunity to apply variable rates of fertilizers to meet the actual crop needs at every locations of the field. However, the commonly used normalized difference vegetation index (NDVI)... R. Khosla, L. Longchamps

18. Development of a Quick Diagnosis Method to Target Fields with Better Potential for Site-Specific Weed Management

Site-specific weed management appears as an innovative way of saving herbicides in crop while maintaining yield. This can potentially lead economic and ecological benefits. However, it was reported in the literature that savings range from 1 % to 94 % from one field to the other. This implies that certain fields... B. Panneton, M. Simard, G.D. Leroux, L. Longchamps

19. Testing The Author Sequence - Finalize

This is just a test to verify the bug with the authors sequence. ... L. Longchamps, B. Panneton, D.G. Westfall, R. Khosla

20. Using Multiplex® to Manage Nitrogen Variability in Champagne Vineyard

... L. Marine, M. Manon, G. Claire, P. Laurent, F. Mostafa, C. Zoran, B. Naima, D. Sébastien, G. Olivier

21. Integrated Crop Canopy Sensing System for Spatial Analysis of In-Season Crop Performance

Over the past decade, the relationships between leaf color, chlorophyll content, nitrogen supply, biomass and grain yield of agronomic crops have been studied widely.... L. Shiratsuchi, C.C. Lutz, R.B. Ferguson, V.I. Adamchuk

22. An Approach to Selection of Soil Water Content Monitoring Locations within Fields

Increased input efficiency is one of the main challenges for a modern agricultural enterprise. One way to optimize production cycles is to rationalize crop residue utilization. In conditions where there is limited use of mineral fertilizers and without applying manure, plant residues may be used as an organic fertilizer as... V.I. Adamchuk, L. Pan, R.B. Ferguson

23. Landscape Influences on Soil Nitrogen Supply and Water Holding Capacity for Irrigated Corn

... T. Shaver, M. Schmer, S. Irmak, S. Van donk, B. Wienhold, V. Jin, A. Bereuter, D. Francis, D. Rudnick, N. Ward, L. Hendrickson, R. Ferguson, V.I. Adamchuk

24. An Evaluation Of HJ-CCD Broadband Vegtation Indices For Leaf Chlorophyll Content Estimation

Leaf chlorophyll content is one of the most important biochemical variables for crop physiological status assessment, crop biomass estimation and crop yield prediction in precision agriculture. Vegetation indices were considered effective for chlorophyll content estimation. Although hyperspectral reflectance is proven to be better than multispectral reflectance for leaf chlorophyll content retrieval, the scarcity of available data from satellite hyperspectral... T. Dong, J. Shang, J. Meng, J. Liu

25. In-Season Nitrogen Requirement For Maize Using Model And Sensor-Based Recommendation Approaches

Nitrogen (N), an essential element, is often limiting to plant growth.  There is great value in determining the optimum quantity and timing of N application to meet crop needs while minimizing losses.  Low nitrogen use efficiency (NUE) has been attributed to several factors including poor synchrony between N fertilizer and crop demand, unaccounted for spatial variability resulting in varying crop N needs, and temporal variances in crop N needs.  Applying a portion... L.J. Stevens, R.B. Ferguson, D.W. Franzen, N.R. Kitchen

26. Effect Of Time Of Application On Spray Coverage Using Solid Set Canopy Delivery System

Permanent or solid set canopy delivery system can be used for foliar application in tree fruit orchards. The emitters are placed along the tree rows and are very close to tree canopy. During spray application droplets quickly get deposited on tree canopy and coverage of up to 90% could be achieved. However concerns still exist regarding critical time required to achieve target coverage using SSCD system. This knowledge of selecting an appropriate application time could help growers... M. Karkee, Q. Zhang, A. Sharda

27. Unmanned Aerial System To Determine Nitrogen Status In Maize

Maize field production shows spatial variability during vegetative crop growth that could be used to prescribe nitrogen variable rates. The use of portable sensors mounted on high-clearance applicators is well documented, however new UAS vehicle equipped with high resolution digital cameras could be used to determine crop spatial variability with the advantage of survey extensive field areas. To our knowledge, comparisons between vegetation indices obtained by a modified digital camera and... A.C. Kemerer, S.M. Albarenque, R.J. Melchiori

28. sUAVS Technology For Better Monitoring Crop Status For Winter Canola

The small-unmanned aircraft vehicles (sUAVS) are currently gaining more popularity in agriculture with uses including identification of weeds and crop production issues, diagnosing nutrient deficiencies, detection of chemical drift, scouting for pests, identification of biotic or abiotic stresses, and prediction of biomass and yield. Research information on the use of sUAVS have been published and conducted in crops such as rice, wheat, and corn, but the development of... I.A. Ciampitti, K. Shroyer, V. Prasad, A. Sharda, M.J. Stamm, H. Wang, K. Price, D. Mangus

29. Selection and Utility of Uncooled Thermal Cameras for Spatial Crop Temperature Measurement Within Precision Agriculture

Since previous research used local, single-point measurements to indicate crop water stress, thermography is presented as a technique capable of measuring spatial temperatures supporting its use for monitoring crop water stress. This study investigated measurement accuracy of uncooled thermal cameras under strict environmental conditions, developed hardware and software to implement uncooled thermal cameras and quantified intrinsic properties that impact measurement accuracy and repeatability.... D.L. Mangus, A. Sharda

30. Site-specific Scale Efficiency Determined by Data Envelopment Analysis of Precision Agriculture Field Data

Since its inception and acceptance as a benchmarking tool within the economics literature, data envelopment analysis (DEA) has been used primarily as a means of calculating and ranking whole-farm entities marked as decision making units (DMU) against one another.  Within this study, instead of ranking the entire farm operation against similar peers that encompass the study, individual data points from within the field are evaluated to analyze the site-specific technical efficiencies estimated... J.L. Maurer, T.W. Griffin, A. Sharda

31. Spectral Vegetation Indices to Quantify In-field Soil Moisture Variability

Agriculture is the largest consumer of water globally. As pressure on available water resources increases, the need to exploit technology in order to produce more food with less water becomes crucial. The technological hardware requisite for precise water delivery methods such as variable rate irrigation is commercially available. Despite that, techniques to formulate a timely, accurate prescription for those systems are inadequate. Spectral vegetation indices, especially Normalized Difference... J. Siegfried, R. Khosla, L. Longchamps

32. Modifying the University of Missouri Corn Canopy Sensor Algorithm Using Soil and Weather Information

Corn production across the U.S. Corn belt can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N uptake (V7-V11), reducing the amount of N lost to these processes. However, N recommendation algorithms used in conjunction with canopy sensor measurements have not proven accurate in making N recommendations... G. Bean, N.R. Kitchen, D.W. Franzen, R.J. Miles, C. Ransom, P. Scharf, J. Camberato, P. Carter, R.B. Ferguson, F. Fernandez, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

33. Detecting Nitrogen Variability at Early Growth Stages of Wheat by Active Fluorescence and NDVI

Low efficiency in the use of nitrogen fertilizer, has been reported around the world which often times result in high production costs and environmental damage. Today, unmanned aerial vehicles (UAV) cameras are being used to obtain conditions of crops, and can cover large areas in a short time. The objectives of this study were (i) to investigate N-variability in wheat at early growth stages using induced fluorescence indices, NDVI measured by active sensor and NDVI obtained by digital imagery;... E. Patto pacheco, J. Liu, L. Longchamps, R. Khosla

34. Weather Impacts on UAV Flight Availability for Agricultural Purposes in Oklahoma

This research project analyzed 21 years of historical weather data from the Oklahoma Mesonet system.  The data examined the practicality of flying unmanned aircraft for various agricultural purposes in Oklahoma.  Fixed-wing and rotary wing (quad copter, octocopter) flight parameters were determined and their performance envelope was verified as a function of weather conditions.  The project explored Oklahoma’s Mesonet data in order to find days that are acceptable for flying... P. Weckler, C. Morris, B. Arnall, P. Alderman, J. Kidd, A. Sutherland

35. Evaluation of a Seed-fertilizer Application System Using a Laser Scanner

The system evaluated is a design that combines planter and sprayer technologies to allow clients to plant crops while simultaneously spraying initial fertilizer on or in close proximity to the seed.  The system is an idea Capstan Ag Systems has been pursuing for around 15 years, and has recently been revived in a partnership with Great Plains Manufacturing Company.  Great Plains Manufacturing released the final product under the name AccushotTM at the 2015... P. Weckler, N. Wang, C. Zhai, L. Zhang, B. Luo, J. Long, R. Taylor

36. Climate Smart Precision Nitrogen Management

Climate Smart Agriculture (CSA) aims at improving farm productivity and profitability in a sustainable way while building resilience to climate change and mitigating the impacts of agriculture on greenhouse gas emissions. The idea behind this concept is that informed management decision can help achieve these goals. In that matter, Precision Agriculture goes hand-in-hand with CSA. The Colorado State University Laboratory of Precision Agriculture (CSU-PA) is conducting research on CSA practices... L. Longchamps, R. Khosla, R. Reich

37. Spatial Variability of Soil Nutrients and Site Specific Nutrient Management in Maize

A field study was conducted during kharif 2014 and rabi 2014-15 at Southern Transition Zone of Karnataka under the jurisdiction of University of Agricultural Sciences, GKVK, Bangalore, India to know the spatial variability for available nutrient content in cultivator’s field and effect of site specific nutrient management in maize. The farmer’s fields have been delineated with each grid size of 50 m x 50 m using geospatial technology. Soil samples from 0-15 cm were... S. T, M. Giriyappa, D. Hanumanthappa, N. Dr., S. K, S. Yogananda, A. Kiran

38. On Farm Studies to Determine Seeding Rate in Corn

Seeding rate (SDR) is one of the most critical production practices impacting productivity and economic return for corn (Zea mays L.) By changing SDRs in different zones within a field, herein termed as site-specific management, better economic results can be produced as the outcome of reducing SDRs in low productivity areas and increasing SDRs under high-yielding environments, relative to the uniform SDR management performed by the producer. The aim of this study was to analyze yield responses... G. Balboa, S. Varela, I. Ciampitti, S. Duncan, T. Maxwell, D. Shoups, A. Sharda

39. Value of Map Sharing Between Multiple Vehicles Using Automated Section Control in the Same Field

Large area farms and even moderate sized farms employing custom applicators and harvesters have multiple machines in the same field at the same time conducting the same field operation.  As a method to control input costs and minimize application overlap, these machines have been equipped with automatic section control (ASC). Over application is a concern especially for more irregularly shaped fields; however modern technology including automated guidance combined with automatic section control... J. Bennett, C. Wilson, A. Sharda, T. Griffin

40. Field-scale Nitrogen Recommendation Tools for Improving a Canopy Reflectance Sensor Algorithm

Nitrogen (N) rate recommendation tools are utilized to help producers maximize grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. This may result in excess N being lost to the environment or producers receiving decreased economic returns on yield. Canopy reflectance sensors are capable of capturing within-field variability, although the sensor algorithm recommendations may not always be as accurate... C.J. Ransom, M. Bean, N. Kitchen, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

41. Active and Passive Crop Canopy Sensors As Tools for Nitrogen Management in Corn

The objectives of this research were to (i) assess the correlation between active and passive crop canopy sensors’ vegetation indices at different corn growth stages and (ii) assess sidedress variable rate nitrogen (N) recommendation accuracy of active and passive sensors compared to the agronomic optimum N rate (AONR). The experiment was conducted near Central City, Nebraska on a Novina sandy loam planted to corn on 15 April 2015. The experiment was a randomized complete-block design with... L. Bastos, R. Ferguson

42. Real-time Gauge Wheel Load Variability on Planter with Downforce Control During Field Operation

Downforce control allows planters to maintain gauge wheel load across a range of soil resistance within a field. Downforce control is typically set for a target seed depth and either set to manually or automatically control the gauge wheel load. This technology uses load cells to actively regulate downforce on individual row units by monitoring target load on the gauge wheels. However, no studies have been conducted to evaluate the variability in gauge wheel load observed during planter operation... A. Sharda, S. Badua, D. Flippo, I. Ciampitti, T.W. Griffin

43. Liquid Flow Control Requirements for Crop Canopy Sensor-Based N Management in Corn: A Project SENSE Case Study

While on-farm adoption of crop canopy sensors for directing in-season nitrogen (N) application has been slow, research focused on these systems has been significant for decades. Much emphasis has been placed on developing and testing algorithms based on sensor output to predict N needs, but little information has been published regarding liquid flow control requirements on equipment used in conjunction with these sensing systems. Addition of a sensor-based system to a standard spray rate controller... J. Luck, J. Parrish, L. Thompson, B. Krienke, K. Glewen, R.B. Ferguson

44. Technological Improvement on Sugar Cane Yield Monitor

This paper presents the technological improvement on sugar cane yield monitor. The system designed employs load cells as an instrument for weighing billets, set up on the side conveyor of the harvester before the sugar cane billets are dropped into a field transport wagon. This data, along with the information gathered by GPS installed on the harvester, enabled the elaboration of a digital yield map using GIS. In order to improve the yield monitor a re-design of the first prototype was accomplished.... D.G. Cerri, G.R. Gray, P.S. Magalhães

45. Using Deep Learning - Convolutional Naural Networks (CNNS) for Real-Time Fruit Detection in the Tree

Image/video processing for fruit detection in the tree using hard-coded feature extraction algorithms have shown high accuracy on fruit detection during recent years. While accurate, these approaches even with high-end hardware are still computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks architecture based on single-stage detectors. Using deep-learning techniques eliminates the need for hard-code specific features for specific... K. Bresilla, L. Manfrini, A. Boini, G. Perulli, B. Morandi, L.C. Grappadelli

46. An Active Thermography Method for Immature Citrus Fruit Detection

Fast and accurate methods of immature citrus fruit detection are critical to building early yield mapping systems. Previously, machine vision methods based on color images were used in many studies for citrus fruit detection. Despite the high resolutions of most color images, problems such as the color similarity between fruit and leaves, and various illumination conditions prevented those studies from achieving high accuracies. This project explored a novel method for immature citrus fruit detection... H. Gan, W.S. Lee, V. Alchanatis, A. Abd-elrahman

47. Developing an Integrated Approach for Estimation of Soil Available Nutrient Content Using the Modified WOFOST Model and Time-Series Multispectral UAV Observations

Soil available nutrient (SAN) plays an important role in crop growth, yield formation, and plant-soil-atmosphere system exchange. Nitrogen (N), phosphorus (P) and potassium (K) are recognized as three primary nutrients in crop production. Accurate and timely information on SAN conditions at key crop growth stages is important for developing beneficial management practices. While traditional field sampling can obtain reliable information for limited number of sites, it is infeasible for spatially... Z. Cheng, J. Meng, J. Shang, J. Liu, B. Qian, Q. Jing

48. On-Farm Digital Solutions and Their Associated Value to North American Farmers

Digital tools and data collection have become standard in a wide variety of present day agricultural operations. An array of digital tools, such as high resolution operational mapping, remote sensing, and farm management software offer solutions to many of the problems in modern agriculture. These technologies and services can, if implemented correctly, provide both immediate and long term agronomic value. A growing number of producers in Ohio and around North America question the proper method... R. Colley iii, J. Fulton, N. Douridas, K. Port

49. Field Level Management and Data Verification of Variable Rate Fertilizer Application

Increased cost efficiencies and ease of use make spinner-disc spreaders the primary method of applying fertilizers throughout much of the United States. Recently, advances in spreader systems have enabled multiple fertilizer products to be applied at variable application rates. This provides greater flexibility during site-specific management of in-field fertility. Physical and aerodynamic properties vary for fertilizer granules of different sources and densities, these properties in turn affect... R. Colley iii, J. Fulton, S. Virk, E. Hawkins

50. Active and Passive Sensor Comparison for Variable Rate Nitrogen Determination and Accuracy in Irrigated Corn

The objectives of this research were to (i) compare active and passive crop canopy sensors’ sidedress variable rate nitrogen (VRN) derived from different vegetation indices (VI) and (ii) assess VRN recommendation accuracy of active and passive sensors as compared to the agronomic optimum N rate (AONR) in irrigated corn. This study is comprised of six site-years (SY), conducted in 2015, 2016 and 2017 on different soil types (silt loam, loam and sandy loam) and with a range of preplant-applied... L. Bastos, R.B. Ferguson

51. Pest Detection on UAV Imagery Using a Deep Convolutional Neural Network

Presently, precision agriculture uses remote sensing for the mapping of crop biophysical parameters with vegetation indices in order to detect problematic areas, and then send a human specialist for a targeted field investigation. The same principle is applied for the use of UAVs in precision agriculture, but with finer spatial resolutions. Vegetation mapping with UAVs requires the mosaicking of several images, which results in significant geometric and radiometric problems. Furthermore, even... Y. Bouroubi, P. Bugnet, T. Nguyen-xuan, C. Bélec, L. Longchamps, P. Vigneault, C. Gosselin

52. Influence of Planter Downforce Setting and Ground Speed on Seeding Depth and Plant Spacing Uniformity of Corn

Uniform seed placement improves seed-to-soil contact and requires proper selection of downforce control across varying field conditions. At faster ground speeds, downforce changes and it becomes critical to select the level of planter downforce settings to achieve the desired consistency of seed placement during planting. The objective of this study was to assess the effect of ground speed and downforce setting on seeding depth and plant spacing and to evaluate the relationship of ground speed... A. Sharda, S. Badua, I. Ciampitti, R. Strasser, T.W. Griffin

53. Evaluation of Nutrient Intake in Sheep Fed with Increasing Levels of Crambe Meal (Crambe Abyssinica Hoscht)

The objective of this study was to evaluate the effects of increasing levels of crude protein (CP) substitution of the concentrate by CP of crambe meal (CM) (0, 25, 50 and 75% dry matter basis) on consumption of nutrients. Four rumen fistulated and castrated sheep (18 months old on average and initial body weight of 50 kg) were used distributed in a 4 x 4 Latin square design with 4 treatments and 4 experimental periods (repetitions). Diets were balanced to meet requirements for minimum gains of... K.K. De azevedo, D.M. De figueiredo, M.G. De sousa, G.M. Dallago, R.R. Silveira, L.D. Da silva, R.A. Santos

54. Levels of Inclusion of Crambe Meal (Crambe Abyssinica Hochst) in Sheep Diet on the Balance of Nitrogen and Ureic Nitrogen in the Blood Serum

Crambe meal, which is a co-product of biodiesel production, is a potential substitute for conventional protein sources in ruminant diets. The objective of this study was to evaluate the effect of the substitution of crude protein of the concentrate by crude protein of crambe meal with increasing levels (0, 25, 50, and 75%) on nitrogen balance and blood plasma urea nitrogen concentration in sheep. Four male sheep, rumen fistulated, were placed in metabolic crates and distributed in a 4 x 4 Latin... K.K. De azevedo, D.M. Figueiredo, M.G. De sousa, G.M. Dallago, R.R. Silveira, L.D. Da silva, L.N. Rennó, R.A. Santos

55. Efficiency of Microbial Synthesis and the Flow of Nitrogen Compounds in Sheep Receiving Crambe Meal (Crambe Abyssinica Hochst) Replacing the Concentrade Crude Protein

The objective of this study was to evaluate the effect of increasing levels (0, 25, 50, 75%) of crude protein substitution of the concentrate by crude protein of crambe meal on microbial protein synthesis and the flow of microbial nitrogen compounds in sheep. Four rumen fistulated sheep (18 months and initial average body weight of 50 kg) were distributed in a 4 x 4 Latin square design. Diets were balanced to meet the requirements for minimum gains, containing approximately 14% crude protein and... K.K. De azevedo, D.M. Figueiredo, G.M. Dallago, J.A. Vieira, R.R. Silveira, L.D. Da silva, R.A. Santos, L.N. Rennó, G.B. Pacheco

56. Development of a Graphical User Interface for Spinner-Disc Spreader Calibration and Spread Uniformity Assessment

Broadcast fertilizer distribution through spinner-disc spreaders remain the most cost-effective, and least time consuming process to apply the needed soil amendments for the next crop. Spreaders currently available to producers enable them to apply a variety of granular products at varying rates, blends, and swath widths. In order to uniformly apply granular fertilizer or lime, the spreader should be calibrated by standard pan testing with any change in spreader settings, application rate, or... R. Colley iii, Y. Lin, J. Fulton, S. Shearer

57. Overview and Value of Digital Technologies for North American Soybean Producers

In the current state of digital agriculture, many digital technologies and services are offered to assist North American soybean producers.  Opportunities for capturing and analyzing information related to soybean production methods are made available through the adoption of these technologies.  However, often it is difficult for producers to know which digital tools and services are available to them or understand the value they can provide.  The objective of this... J. Lee, J. Fulton, K. Port, R. Colley iii

58. Environmental Impacts of Precision Feeding Programs Applied in Brazilian Pig Production

This study was undertaken to evaluate the effect that switching from conventional to precision feeding systems during the growing-finishing phase would have on the potential environmental impact of Brazilian pig production. Standard life-cycle assessment procedures were used, with a cradle-to-farm gate boundary. The inputs and outputs of each interface of the life cycle were organized in a model. Grain production was independently characterized in the Central-West and South regions of Brazil,... C. Pomar, I. Andretta, L. Hauschild, M. Kipper, P.S. Pires

59. Precision Nitrogen and Water Management for Enhancing Efficiency and Productivity in Irrigated Maize

Nitrogen and water continue to be the most limiting factors for profitable maize production in the western Great Plains. The objective of this research was to determine the most productive and efficient nitrogen and water management strategies for irrigated maize.  This study was conducted in 2016 at Colorado State University’s Agricultural Research Development and Educational Center, in Fort Collins, Colorado. The experiment included a completely randomized block design with five... E. Phillippi, R. Khosla, L. Longchamps, P. Turk

60. Observational Studies in Agriculture: Paradigm Shift Required

There is a knowledge gap in agriculture. For instance, there is no way to tell with precision what is the outcome of cutting N fertilizer by a quarter on important outcomes such as yield, net return, greenhouse gas emissions or groundwater pollution. Traditionally, the way to generate knowledge in agriculture has been to conduct research with the experimental method where experiments are conducted in a controlled environment with trials replicated in space and... L. Longchamps, B. Panneton, N. Tremblay

61. The Effect of Slope Gradient on the Modelling of Soil Carbon Dioxide Emissions in Different Tillage Systems at a Farm Using Precision Tillage Technology in Hungary

Understanding the role of natural drivers in greenhouse gas (GHG) emitted by agricultural soils is crucial because it contributes to selecting and adapting acceptable eco-friendly farming practices. Hence, Syngenta Ltd. collaborating with researchers, aimed to investigate the effect of two tillage treatments, conventional-tillage (CT) and minimum-tillage (MT) on soil carbon dioxide (CO2) emissions. The research field is in Hungary. Soil columns were derived from different tillage systems... I.M. Kulmany, S. Benke, L. Bede, R. Pecze, V. Vona

62. Machine Learning Techniques for Early Identification of Nitrogen Variability in Maize

Characterizing and managing nutrient variability has been the focus of precision agriculture research for decades. Previous research has indicated that in-situ fluorescence sensor measurements can be used as a proxy for nitrogen (N) status in plants in greenhouse conditions employing static sensor measurements. Indeed, practitioners of precision N management require determination of in-season plant N status in real-time at field scale to enable the most efficient N fertilizer... D. Mandal, R.D. Siqueira, L. Longchamps, R. Khosla

63. Using Prescription Maps for in Field Evaluations of Parameteres Affecting Spraying Accuracy of Self-propelled Sprayer

Weed presence continues to reemerge year over year, chemical costs continue to increase, and chemical usage continuing to face increasing government oversight, are just a few of the challenges that site-specific weed management intends to address by minimizing wasted application of chemicals and reducing environmental load of active ingredients. Thus, sprayer system manufacturers have developed precision spray systems that allow the individual spray nozzles to be controlled precisely. These spray... J. Mayer, P. Flores, J. Stenger

64. Establishment of a Canola Emergence Assessment Methodology Using Image-based Plant Count and Ground Cover Analysis

Manual assessment of emergence is a time-consuming practice that must occur within a short time-frame of the emergence stage in canola (Brassica napus). Unmanned aerial vehicles (UAV) may allow for a more thorough assessment of canola emergence by covering a wider scope of the field and in a more timely manner than in-person evaluations. This research aims to calibrate the relationship between emerging plant population count and the ground cover. The field trial took place at the University... K. Krys, S. Shirtliffe, H. Duddu, T. Ha, A. Attanayake, E. Johnson, E. Andvaag, I. Stavness

65. Developing a Machine Learning and Proximal Sensing-based In-season Site-specific Nitrogen Management Strategy for Corn in the US Midwest

Effective in-season site-specific nitrogen (N) management strategies are urgently needed to ensure both food security and sustainable agricultural development. Different active canopy sensor-based precision N management strategies have been developed and evaluated in different parts of the world. Recent studies evaluating several sensor-based N recommendation algorithms across the US Midwest indicated that these locally developed algorithms generally did not perform well when used broadly across... D. Li, Y. Miao, .G. Fernández, N.R. Kitchen, C. . Ransom, G.M. Bean, .E. Sawyer, J.J. Camberato, .R. Carter, R.B. Ferguson, D.W. Franzen, D.W. Franzen, D.W. Franzen, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.F. Shanahan

66. Enhancing NY State On-farm Experimentation with Digital Agronomy

Agriculture is putting pressure on the ecosystems and practices need to evolve towards a more sustainable way of producing food. Industrial agriculture has imposed a unique production model on the ecosystems while it is now understood that it is more sustainable to adapt the production model to the ecosystem. This involves adapting existing solutions to the local agricultural context and developing new solutions that are best suited to the local ecosystem. Farmers are doing this by conducting... L. Longchamps

67. Strawberry Pest Detection Using Deep Learning and Automatic Imaging System

Strawberry growers need to monitor pests to determine the options for pest management to reduce damage to yield and quality.  However, manually counting strawberry pests using a hand lens is time-consuming and biased by the observer. Therefore, an automated rapid pest scouting method in the strawberry field can save time and improve counting consistency. This study utilized six cameras to take images of the strawberry leaf. Due to the relatively small size of the strawberry pest, six cameras... C. Zhou, W. Lee, A. Pourreza, J.K. Schueller, O.E. Liburd, Y. Ampatzidis, G. Zuniga-ramirez

68. Comparative Analysis of Light-weight Deep Learning Architectures for Soybean Yield Estimation Based on Pod Count from Proximal Sensing Data for Mobile and Embedded Vision Applications

Crop yield prediction is an important aspect of farming and food-production. Therefore, estimating yield is important for crop breeders, seed-companies, and farmers to make informed real-time financial decisions. In-field soybean (Glycine max L.(Merr.)) yield estimation can be of great value to plant breeders as they screen thousands of plots to identify better yielding genotypes that ultimately will strengthen national food security. Existing soybean yield estimation tools,... J.J. Mathew, P.J. Flores, J. Stenger, C. Miranda, Z. Zhang, A.K. Das

69. Seed Localization System Suite with CNNs for Seed Spacing Estimation, Population Estimation and Doubles

Proper seed placement during planting is critical to achieve uniform emergence which optimizes the crop for maximum yield potential. Currently, the ideal way to determine planter performance is to manually measure plant spacing and seeding depth. However, this process is both cost- and labor-intensive and prone to human errors. Therefore, this study aimed to develop seed localization system (SLS) system to measure seed spacing and seeding depth and providing the geo-location of each planted seed.... A. Sharda, R. Harsha chepally

70. Water Stress Assessment for a Better Within-field Nitrogen and Irrigation Management

Swedish crops production is predominantly rain fed; and until now, food security has been safeguarded by relying on imports if seasonal variations of rainfall reduce yield quantity and quality. In Sweden, based on climate change scenarios, farmers organizations and representatives consider water to be a critical factor that potentially will limit the yield levels to a larger extent in the future. In the last decades, it is registered very dry seasons (e.g. 2018 and 2019) and long dry spells in... O. Alshihabi, B. Stenberg, J. Barron

71. The Impact of Row Unit Position on Planter Toolbar on Corn Crop Development: an Experimental Study

Precision planting techniques are essential to grow corn successfully. Monitoring planter speed, row-unit bounce, and gauge-wheel load ensures high-quality seeding. Vertical vibration during planting can impede seed metering and delivery, causing planting variability. Row unit vibration increases with planting speed and can lead to spatial variability in planting. Therefore, the goals of this study were to 1) understand the influence of row unit location on its vertical vibration; and 2) compare... J. Peiretti, A. Sharda, S. Badua

72. In-season Nitrogen Prediction Evaluation Using Airborne Imagery with AI Techniques in Commercial Potato Production

In modern agriculture, timely and precise nitrogen (N) monitoring is essential to optimize resource management and improve trade benefits. Potato (Solanum tuberosum L.) is a staple food in many regions of the world, and improving its production is inevitable to ensure food security and promote related industries. Traditional methods of assessing nitrogen are labour-intensive, time-consuming, and require subjective observations. To address these limitations, a combination of multispectral... B. Javed, A. Cambouris, M. Duchemin, L. Longchamps, P.S. Basran, S. Arnold, A. Fenech, A. Karam

73. A Data Retrieval System to Support Observational Research of On-Farm Experimentation

Observational research is a powerful methodology, capable of rapidly identifying trends and patterns present in complex systems. New work seeks to apply these techniques to agronomic production systems. While data generated from on-farm experimentation are often considered anecdotal, these data hold significant importance for farmers because they originate from their distinctive agricultural systems. Combining the large volumes of farmer-collected data with remote sensing, environmental, and biophysical... P. Lanza, A. Yore, L. Longchamps

74. Mapping Marginal Crop Land on Millions of Acres in the Canadian Prairies

Crop fields cover more than 250,000 km2 of the Canadian Prairies, and many of these contain areas of marginal soil condition that are farmed annually at a loss. Setting aside these unprofitable areas may represent savings for growers as well as reductions in GHG emissions, while restoring them with perennial vegetation could create new natural carbon sinks. There is high potential for these in-field marginal zones to act as a nature-based climate solution in Alberta, Saskatchewan and Manitoba.... S. Shirtliffe, T. Ha, K. Nketia

75. Soil Microbial Biomass and Bacterial Diversity Enhanced Through Winter Cover Cropping in Paddy Fields

Rice production is typically based on input-intensive and often environmentally unsustainable monoculture system. Alternatives are increasing, such as fallow cover cropping and rice–fish coculture (RFC). However, options of fallow cover cropping in RFC are scarcely explored, and the soil microbial response strategies to cover cropping remain unclear. Here, we evaluated soil-plant-microbe interactions under three cover cropping systems: Chinese milk vetch single cropping (CM), rapeseed single... S. Cai, S. Xu, D. Zhang, H. Zhu, L. Longchamps

76. X-ray Imaging in Breeding and Harvesting Processes

The application of X-ray technology has a long tradition in different medical and technical fields. Compared to other sensor systems, its advantages lie in the capability to reveal structures within objects non-destructively. The analysis of X-ray images with image processing methods is applied for quality control, the detection of foreign objects or damages and other anomalies (e.g. in organs or bones). Until recently, the application of X-ray was mainly constrained to stationary applications... M. Weule, E. Hufnagel, J. Claussen, A. Berghaus, S. Burkhart, P. Noack, S. Gerth

77. Optimal Placement of Soil Moisture Sensors in an Irrigated Corn Field

Precision agricultural practices rely on characterization of spatially and temporally variable soil and crop properties to precisely synchronize inputs (water, fertilizer, etc.) to crop needs; thereby enhancing input use efficiency and farm profitability. Generally, the spatial dependency range for soil water content is shorter near the soil surface compared to deeper depths, suggesting a need for more sampling locations to accurately characterize near-surface soil water content. However, determining... D. Mandal, L. Longchamps, R. Khosla

78. Comparison of NDVI Values at Different Phenological Stages of Winter Wheat (Triticum Aestivum L.)

The main objective of this study is to monitor, detect and quantify the presence of live green vegetation with the MicaSense RedEdge-MX Dual Camera System (MS) mounted on a DJI Matrice 210 V2 and GreenSeeker HCS 250 (GS) in winter wheat (Triticum aestivum L.) by using Normalized Difference Vegetation Index (NDVI). Surveys were conducted in the North-Western part of Hungary, in Mosonmagyaróvár on six different dates. A small-scale field trial in winter wheat was constructed as a randomized... S. Zsebő, G. Kukorelli, V. Vona, L. Bede, D. Stencinger, A. Kovacs, G. Milics, I.M. Kulmany, B. Horváth, G. Hegedűs, J.A. Abdinoor

79. Quantifying Constant Rate and Sensor-based Variable Rate Nitrogen (N) Fertilizer Response on Crop Vigor and Yield

Agricultural fertilizer application is one of the essential components of crop production. It enhances crop growth, yield, and quality of the crop. The most widely used methods for nutrient application are the constant rate and variable rate application. An improper supply of fertilizer can potentially hamper crop growth and reduce the quality of the crop. Therefore, there is a need to select the best optimum nutrient application method for proper utilization of the nutrients. Therefore, the study... R. Singh, A. Sharda

80. Real-time Seed Mapping Using Direct Methods

Seed distance estimations are critical for planter evaluation and the prediction of planting parameter performance. However, these estimations are typically not conducted in real-time. In this study, we propose a real-time seed mapping approach using cameras and computer vision networks, augmented by a Kalman filter for vehicle state estimation. This process involves the transformation of pixel coordinates into real-world coordinates. We conduct a comparative analysis between these estimates and... A. Sharda, R. Harsha chepally

81. Using Dynamic Crop Growth Data to Assess Early Season N Status in Maize

Nitrogen (N) is perhaps the most important mineral nutrient determining crop growth and yield. Fertilizer sources can vary, but it is used in practically all cropping systems, and accounts for one of the highest input costs. Farmers often overapply N to their fields as a simple "insurance policy" to guarantee maximum yields. This can be problematic due to the volatile nature of N in the environment, as well reducing potential profits by not optimizing the rates. There... A. Yore, P. Lanza, L. Longchamps

82. Automated Pipeline for Research Plot Extraction and Multi-polygon Shapefile Generation for Phenotype and Precision Agriculture Applications

The plant breeding community increasingly adopt remote sensing platforms like unmanned aerial vehicles (UAVs) to collect phenotype data on various crops. These platforms capture high-resolution multi-spectral (MS) image data during extensive field trials, enabling concurrent evaluation of hundreds of plots with diverse seed varieties and management practices. Currently, the plant breeders rely on manual and intricate data extraction, processing, and analysis of high-resolution imagery to draw... A. Sharda, A. Dua, W. Schapaugh, R. Hessel

83. Optimizing Corn Irrigation Strategies: Insights from NDVI Trends, Soil Moisture Dynamics, and Remote Sensing

This comprehensive field experiment systematically examines the impact of varied irrigation rates on corn growth and yield across three treatments: 33%, 67%, and 100% irrigation rates. Utilizing the normalized difference vegetation index (NDVI) as a parameter for vegetation health, distinct patterns emerge throughout key growth stages. The 100% irrigation treatment consistently exhibits superior vegetation health, sustaining higher NDVI values across all stages, while the 33% treatment reveals... J.O. Abon, A. Sharda

84. Enhancing Agricultural Feedback Analysis Through VUI and Deep Learning Integration

A substantial amount of information relies on consumers, influencing aspects from product adoption to overall satisfaction. Similarly, the agricultural sector is entirely dependent on farmers, who dictate the success of products and highlight associated challenges. Our study aligns with this perspective, recognizing the significance of understanding farmers' needs to assist tractor manufacturing industries. As these industries aim for widespread adoption of their products among farmers, it... S. Kaushal, A. Sharda

85. Digital Agriculture Driven by Big Data Analytics: a Focus on Spatio-temporal Crop Yield Stability and Land Productivity

In the ever-evolving landscape of agriculture, the adoption of digital technologies and big data analytics has ushered in a transformative era known as digital agriculture. This paradigm shift is primarily motivated by the pressing imperative to address the growing global population's food requirements, mitigate the adverse effects of climate change, and promote sustainable land management. Canada, a significant player in global food production, has made a substantial commitment to reducing... K. Nketia, T. Ha, H. Fernando, S. Shirtliffe, S. Van steenbergen

86. Assessing Plant Spacing Inequality and Its Impact on Crop Yield Using Lorenz Curves and Gini Index

Plant spacing is the distance between individual plants in a crop field. It is vital for proper crop establishment as it can influence the spatial and temporal variation in plant emergence. These variations alter how plants interact for light, water, and nutrient resource needs, which, in turn, impact an individual plant's growth conditions and crop yield. Alternatively, studies have associated uniformity in plant spacing with higher yields and increased weed suppression. Modern precision... B. Aryal, A. Sharda, J. Peiretti

87. Evaluation of the Effect of Different Herbicide Treatments by Using UAV in Maise (Zea mays L.) Cultivation – First Experiences in a Long-term Experiment at Széchenyi István University, Hungary

As part of the Green Deal, the European Union has set a goal to reduce the use of chemical pesticides by 50 percent until 2030. To achieve this goal, in addition to reducing the amount of pesticide used, attention must also be paid to monitoring the temporal and spatial effects of pesticides on weeds during the cultivation of various crops. Hence, Syngenta Ltd., collaborating with researchers, aimed to monitor the effect of five different types of herbicides by UAV in two tillage treatments (CN... I.M. Kulmany, B. Horváth, G. Kukorelli, S. Zsebő, D. Stencinger, Z. Borbás, R. Pecze, L. Bede, Z. Varga, A. Kósa, G. Pinke, Z.K. Hashim, G. Hegedűs, J.A. Abdinoor, G.S. Agampodi

88. Assessing Spray Coverage Variability of an Under-canopy Robotic Sprayer System in Sorghum Crop

An under-canopy robotic sprayer system was developed for site-specific pest management in row crops. However, the effect of nozzle type and spray coverage variability at different points within the plant canopy was unknown. The objective of this study was to quantify the spray coverage at multiple locations within the sorghum crop canopy to determine the effectiveness of such robotic systems. The experiments were conducted in a sorghum field in Ashland, Kansas, using XR8001 flat fan and TXVS6... P. Pokharel, A. Sharda, M. Gadhwal, B. Aryal

89. Design and Development of a Spraying System for Under Canopy Rover and Its Integration with Computer Vision System

Chemical spraying such as herbicides, insecticides are essential in any agricultural field for controlling pest, weed etc. and ultimately increasing yield. About one-third of agricultural yields rely on the utilization of pesticides. However, around 3 billion kilograms of pesticides are used worldwide every year and effective utilization of it is merely 1%. The precise application of these chemicals is necessary to reduce negative impacts on environment as well as human health. The application... N.K. Piya, A. Sharda, J.R. Persch, D. Flippo, R. Harsha chepally

90. System Development for Application and Testing of Spray-on Biodegradable Mulch

Plastic mulch films have long been a staple in agriculture and plays a critical part in the specialty crop production. Plastic mulch provides benefits such as conserving soil moisture, suppress weed growth and increase soil temperature. However, the widespread use of petroleum based plastic mulch films have raised concerns due to challenges associated with their removal and environmental impact. Plastic mulch has to be removed after every growing season. During the removal process, microplastic... N.K. Piya, A. Sharda, D. Flippo

91. Effective Furrow Closing Systems for Consistent Corn Seed Placement

Farmers face a constant challenge when choosing the appropriate planter setup due to the variability of cropping systems under no-till. Effective performance of the planter's closing wheels can reduce errors from previous components that affect seedbed formation in the furrow. Effective seed-to-soil contact during planting is essential for optimal seed emergence and overall crop stand, with the closing wheels playing a pivotal role in this process. Producers have a range of closing wheels... J. Peiretti, B. Gigena, S. Badua, A. Sharda

92. Estimating Water and Nitrogen Deficiency in Corn Using a Multi-parameter Proximal Sensor

The Crop Circle Phenom (CCP) is an innovative integrated proximal sensor that can be potentially used to perform in-season diagnosis of nitrogen and water status. In addition to measuring spectral reflectance in several bands including the red, red edge, and near-infrared wavelengths, the CCP can also measure canopy and air temperatures and provides several parameters that can be associated with chlorophyll content, crop vigor, and water status. These capabilities differentiate the CCP from other... L. Lacerda, Y. Miao, V. Sharma, A. E. flores, A. Kechchour, J. Lu

93. Rapid Assessment of Yield Using Machine Learning Models and UAV Multispectral Imagery for Soybean Breeding Plots

Advances in precision agriculture in data collection, crop monitoring, screening, and management over the 10-15 years are revolutionizing on-farm agricultural research trials. In crop breeding plots, this approach is called "High Throughput Phenotyping", which uses innovative technology to extract phenotypic data for large populations. Remote sensing has become one of the commonly used platforms for rapid acquisition of imagery data at spatial and temporal scale. Particularly, the unmanned... A. Dua, A. Sharda, W. Schapaugh, R. Hessel, S. Rai

94. Hardware Design, Validation & Integration of Wireless Data Communication Platform for Site Specific Liquid Application System

Autonomous farming applications require real-time data handling of information gathered by diverse sensors on the platform. Transmitting dynamic information swiftly is crucial, but currently available systems often lack this capability, resulting in data loss. An urgent need exists for an instant wireless communication platform to capture, relay, and process data efficiently to the central hub for further processing. This study focuses on the development of a wireless data... K. Shende, A. Sharda

95. Quantifying Boom Movement in Agricultural Sprayer Booms Using Neural Networks for Real-world Field Scenarios

Application rate errors in self-propelled agricultural sprayers remain a significant concern, necessitating a comprehensive understanding of boom movement during actual field operating scenarios. This study introduces new objectives to quantify boom movement across commercial sprayers when operated by different individuals and compares these movements among various machines. The goal is to develop a metric that identifies potential improvement needs for boom height control system. The approach... T. Kaloya, A. Sharda, A. Dalal

96. Machine Learning Model to Predict Total Nozzle Volume Delivery for Pulse Width Modulated Flow Controllers

Product flow rate in the Pulse Width Modulation (PWM) variable rate technologies depends on the duty cycle. However, the actual product flow rate at any duty cycle depends on pressure rise, stable pressure during the cycle, fall time and pressure drop across the nozzle body. The current controller does not consider the pressure drops and the estimation of actual flow during each cycle at any duty cycle cannot be estimated with capturing high-frequency pressure data. Knowledge of volume delivery... S. Dua, A. Sharda

97. Enhancing Seeding Efficiency: Evaluating Row Cleaners with Computer Vision in Precision Agriculture

In precision agriculture, the effective sowing of seeds is crucial but often hindered by challenges like hair pinning, low soil temperatures, and heavy residue on the soil surface. To address these issues, row cleaners are employed to clear the path for seeder opener discs, ensuring a clean, uniform trench for seed placement. This study examines the performance of various row cleaner models and introduces a novel method for their automatic, quantitative evaluation using computer vision technology.  We... F. Sidharth, A. Sharda, B.G. Berretta

98. Response of Canola and Wheat to Application of Enhanced Efficiency Nitrogen Fertilizers on Contrasting Management Zones

Investment on nitrogen (N) fertilizers is a major cost of growers, and variable rate (VR) application of N fertilizers could help optimize its usage. In the growing season of 2023, field experiments were conducted at four sites (i.e., Watrous – Saskatchewan SK and two fields in the vicinity of Strathmore, Alberta AB, Canada). The main objectives were to (i) determine performance of Enhanced Efficiency N Fertilizers - EENF (i.e., Coated urea, urea with double inhibitors - DI, urea mixed with... H. Asgedom, G. Hehar, C. Willness, W. Anderson, H. Duddu, P. Mooleki, J. Schoenau, M. Khakbazan, R. Lemke, E. derdall, J. Shang, K. Liu, J. Sulik, E. Karppinen, I. Mbakwe

99. On-Farm Experimentation Community Meeting

Meeting Agenda: Updates for the OFE-C Newsletters  Increased membership Conference  Global OFE Network (GOFEN) Scientists AND Farmers Global Directory Discussion points OFE-C Outreach Country reps for the OFE-C / Entry point Newsletter... L. Longchamps