Proceedings

Find matching any: Reset
Pardaev, S
Isenhart, T.M
Kubickova, H
Kasimati, A
Sobjak, R
Shcherbatyuk, N
Suddeth, K.A
Add filter to result:
Authors
Allphin, E
Kitchen, N.R
Suddeth, K.A
Thompson, A
Tomer, M
Isenhart, T.M
James, D.E
Kholikulov, S
Pardaev, S
Charvat, K
Berzins, R
Bergheim, R
Zadrazil, F
Macura, J
Langovskis, D
Snevajs, H
Kubickova, H
Horakova, S
Charvat Jr., K
Bazzi, C.L
Silva, F.V
Gebler, L
Souza, E.G
Schenatto, K
Sobjak, R
Dos Santos, R.S
Hachisuca, A.M
Franz, F
Bazzi, C.L
Martins, M.R
Gebler, L
Souza, E.G
Schenatto, K
Sobjak, R
Hachisuca, A.
Franz, F
Souza, E.G
Bazzi, C
Hachisuca, A
Sobjak, R
Gavioli, A
Betzek, N
Schenatto, K
Mercante, E
Rodrigues, M
Moreira, W
Aikes Junior, J
Souza, E.G
Bazzi, C
Sobjak, R
Hachisuca, A
Gavioli, A
Betzek, N
Schenatto, K
Moreira, W
Mercante, E
Rodrigues, M
Hachisuca, A
Souza, E.G
Mercante, E
Sobjak, R
Ganascini, D
Abdala, M
Mendes, I
Bazzi, C
Rodrigues, M
Kang, C
Karkee, M
Zhang, Q
Shcherbatyuk, N
Davadant, P
Keller, M
Bazzi, C.L
Rauber, L.A
Oliveira, W.K
Sobjak, R
Schenatto, K
Gebler, L
Rabello, L.M
Bazzi, C.L
Oliveira, W.K
Sobjak, R
Schenatto, K
Souza, E
Hachisuca, A
Franz, F
Avila, E.N
Bazzi, C.L
Oliveira, W.K
Schenatto, K
Sobjak, R
Rocha, D.M
Sobjak, R
Bazzi, C.L
Schenatto, K
Oliveira, W.K
Menegasso, A.E
Psiroukis, V
Fountas, S
Uyar, H
Balafoutis, A
Kasimati, A
Topics
Spatial Variability in Crop, Soil and Natural Resources
Precision Conservation
Precision Agriculture and Global Food Security
Geospatial Data
Decision Support Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Wireless Sensor Networks and Farm Connectivity
Big Data, Data Mining and Deep Learning
Artificial Intelligence (AI) in Agriculture
Drone Spraying
Type
Poster
Oral
Year
2010
2018
2022
2024
Home » Authors » Results

Authors

Filter results15 paper(s) found.

1. Nitrogen Loss In Corn Production Varies As A Function Of Topsoil Depth

  Understanding availability and loss potential of nitrogen for varying topsoil depths of poorly-drained claypan soil landscapes could help producers make improve decisions when managing crops for feed grain or bio-fuels.  While it has been well documented that topsoil depth on these soils plays an important role in storing water for crop growth, it is not well known how this same soil... E. Allphin, N.R. Kitchen, K.A. Suddeth, A. Thompson

2. Extending The Concept Of Precision Conservation To Restoration Of Rivers And Streams

Comprehensive water quality management in watersheds involves management of upland and riparian environments. Efforts to optimize environmental performance of agriculture through field-scale precision conservation should be complemented with riparian restorations to enhance capacities to assimilate... M. Tomer, T.M. Isenhart, D.E. James

3. Effect of Composts Prepared from Municipal Solid Waste in the Agrochemical Properties of Serosem Soils of Uzbekistan

Optimizing soil fertility and agro-chemical soil properties are currently of great importance, since the content of humus and nutrients from year to year decreases. The reason for decline of soil fertility is the lack of organic fertilizers and use of crop rotation involving leguminous perennial herb. On the other hand a source of organic fertilizer can be municipal solid waste. Currently in the cities of Uzbekistan accumulated huge amount of solid waste whose disposal is an environmental necessity... S. Kholikulov, S. Pardaev

4. Map Whiteboard As Collaboration Tool for Smart Farming Advisory Services

Precision agriculture, a branch of smart farming, holds great promise for modernization of European agriculture both in terms of environmental sustainability and economic outlook.  The vast data archives made available through Copernicus and related infrastructures, combined with a low entry threshold into the domain of AI-technologies has made it possible, if not outright easy, to make meaningful predictions that divides  individual agricultural fields into zones where variable rates... K. Charvat, R. Berzins, R. Bergheim, F. Zadrazil, J. Macura, D. Langovskis, H. Snevajs, H. Kubickova, S. Horakova, K. Charvat jr.

5. Fruit Fly Electronic Monitoring System

Insects are a constant threat to agriculture, especially the cultivation of various types of fruits such as apples, pears, guava, etc. In this sense, it is worth mentioning the Anastrepha genus flies (known as fruit fly), responsible for billionaire losses in the fruit growing sector around the world, due to the severity of their attack on orchards. In Brazil, this type of pests has been controlled in most product areas by spraying insecticides, which due to the need for prior knowledge regarding... C.L. Bazzi, F.V. Silva, L. Gebler, E.G. Souza, K. Schenatto, R. Sobjak, R.S. Dos santos, A.M. Hachisuca, F. Franz

6. Yield Mapping in Fruit Farming

Due to the importance of increasing the quantity and quality of world agricultural production, the use of technologies to assist in production processes is essential. Despite this, a timid adoption by precision agriculture (PA) technologies is verified by the Brazilian fruit producers, even though it is one of the segments that had been stood out in recent years in the country's economy. In the PA context, yield maps are rich sources of information, especially by species harvested through... C.L. Bazzi, M.R. Martins, L. Gebler, E.G. Souza, K. Schenatto, R. Sobjak, A. . Hachisuca, F. Franz

7. AgDataBox: Web Platform of Data Integration, Software, and Methodologies for Digital Agriculture

Agriculture is challenging to produce more profitably, with the world population expected to reach some 10 billion people by 2050. Such a challenge can be achieved by adopting precision agriculture and digital agriculture (Agriculture 4.0). Digital agriculture has become a reality with the availability of cheaper and more powerful sensors, actuators and microprocessors, high-bandwidth cellular communication, cloud communication, and Big Data. Digital agriculture enables the flow of information... E.G. Souza, C. Bazzi, A. Hachisuca, R. Sobjak, A. Gavioli, N. Betzek, K. Schenatto, E. Mercante, M. Rodrigues, W. Moreira

8. Web Application for Automatic Creation of Thematic Maps and Management Zones - AgDataBox-Fast Track

Agriculture is challenging to produce more profitably, with the world population expected to reach some 10 billion people by 2050. Such a challenge can be achieved by adopting precision agriculture and digital agriculture (Agriculture 4.0). Digital agriculture (DA) has become a reality with the availability of cheaper and more powerful sensors, actuators and microprocessors, high-bandwidth cellular communication, cloud communication, and Big Data. DA enables information to flow from used agricultural... J. Aikes junior, E.G. Souza, C. Bazzi, R. Sobjak, A. Hachisuca, A. Gavioli, N. Betzek, K. Schenatto, W. Moreira, E. Mercante, M. Rodrigues

9. AgDataBox-IoT Application Development for Agrometeorogical Stations in Smart Farm

Currently, Brazil is one of the world’s largest grain producers and exporters. Brazil produced 125 million tons of soybean in the 2019/2020 growing season, becoming the world’s largest soybean producer in 2020. Brazil’s economic dependence on agribusiness makes investments and research necessary to increase yield and profitability. Agriculture has already entered its 4.0 version, also known as digital agriculture, when the industry has entered the 4.0 era. This new paradigm uses... A. Hachisuca, E.G. Souza, E. Mercante, R. Sobjak, D. Ganascini, M. Abdala, I. Mendes, C. Bazzi, M. Rodrigues

10. Diagnosis of Grapevine Nutrient Content Using Proximal Hyperspectral Imaging

Nutrient deficiencies on grapevines could affect the fruit yield and quality, which is a major concern in vineyards. Nutrient deficiencies may be recognizable by foliar symptoms that vary by mineral nutrient and stress severity, but it is too late to manage when visible deficiency symptoms become apparent. The nutrient analysis in the laboratory is the way to get an accurate result, but it is time and cost-intensive. The differences in leaf nutrient levels also alter spectral characteristics outside... C. Kang, M. Karkee, Q. Zhang, N. Shcherbatyuk, P. Davadant, M. Keller

11. Portable Soil EC - Development of an Electronic Device for Determining Soil Electrical Conductivity

Decision-making in agriculture demands continuous monitoring, a factor that propels the advancement of tools within Agriculture 4.0. In this context, understanding soil characteristics is essential. Electrical conductivity (EC) sensors play a pivotal role in this comprehension. Given this backdrop, the core motivation of this research was developing an accessible and effective electronic device to measure the apparent EC of the soil. It provides features like geolocation, recording of the date... C.L. Bazzi, L.A. Rauber, W.K. Oliveira, R. Sobjak, K. Schenatto, L. Gebler, L.M. Rabello

12. AgDataBox-IoT - Managing IoT Data and Devices on Precision Agriculture

The increasing global population has resulted in a substantial demand for nourishment, which has prompted the agricultural sector to investigate ways to improve efficiency. Precision agriculture (PA) uses advanced technologies such as the Internet of Things (IoT) and sensor networks to collect and analyze field information. Although the advantages are numerous, the available data storage, management, and analysis resources are limited. Therefore, creating and providing a user-friendly web application... C.L. Bazzi, W.K. Oliveira, R. Sobjak, K. Schenatto, E. Souza, A. Hachisuca, F. Franz

13. Geographic Database in Precision Agriculture for the Development of AI Research

Agriculture 4.0 has profoundly transformed production processes by incorporating technologies such as Precision Agriculture, Artificial Intelligence, the Internet of Things, and telemetry. This evolution has enabled more accurate and timely decision-making in agriculture. In response to this movement, the Precision Agriculture Laboratory (AgriLab) of UTFPR, located in Medianeira, proposes the establishment of a consistent and standardized database. This database is continually updated with surveys... E.N. Avila, C.L. Bazzi, W.K. Oliveira, K. Schenatto, R. Sobjak, D.M. Rocha

14. AgDataBox-IA – Web Application with Artificial Intelligence for Agricultural Data Analysis in Precision Agriculture

Agriculture has been continually evolving, incorporating hardware, software, sensors, aerial surveys, soil sampling for chemical, physical, and granulometric analysis (based on sample grids), and microclimatic data, leading to a substantial volume of data. This requires platforms to store, manage, and transform these data into actionable information for decision-making in the field. In this regard, Artificial Intelligence (AI) is the most widely used tool globally to mine and transform vast data... R. Sobjak, C.L. Bazzi, K. Schenatto, W.K. Oliveira, A.E. Menegasso

15. Optimizing Vineyard Crop Protection: an In-depth Study of Spraying Drone Operational Parameters

In modern agriculture, the precise and efficient application of agrochemicals is essential to ensure crop health and increase productivity while minimizing adverse environmental impacts. While traditional spraying methods have long been the cornerstone of crop protection, the introduction of unmanned aerial vehicles (UAVs), commonly known as drones), has led to a revolutionary era in agriculture. UAVs offer novel opportunities to improve agricultural practices by providing precision, efficiency,... V. Psiroukis, S. Fountas, H. Uyar, A. Balafoutis, A. Kasimati