Proceedings

Find matching any: Reset
Arno, J
Ascough II, J.C
Archontoulis, S
Ahrends, H.E
Alahe, M
Amin, S
Add filter to result:
Authors
Arno, J
DEL MORAL, I
Escolà, A
Company, J
MARTÍNEZ-CASASNOVAS, J.A
MASIP, J
SANZ, R
ROSELL, J.R
Delgado, J.A
Ascough II, J.C
Puntel, L
Pagani, A
Archontoulis, S
Thompson, L
Puntel, L
Archontoulis, S
Balboa, G
Degioanni, A
Bongiovanni, R
Melchiori, R
Cerliani, C
Scaramuzza, F
Bongiovanni, M
Gonzalez, J
Balzarini, M
Videla, H
Amin, S
Esposito, G
Ahrends, H.E
Lajunen, A
Kemeshi, J.O
Chang, Y
Yadav, P.K
Alahe, M
Alahe, M
Kemeshi, J.O
Chang, Y
Won, K
Yang, X
Sher, M
Alahe, M
Chang, Y
Kemeshi, J.O
Gummi, S
Menendez III, H
Alahe, M
Gummi, S
Kemeshi, J.O
Chang, Y
Gummi, S
Alahe, M
Chang, Y
Pack, C
Topics
Proximal Sensing in Precision Agriculture
Precision Conservation and Carbon Management
Decision Support Systems
Decision Support Systems
Education and Outreach in Precision Agriculture
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Drivers and Barriers to Adoption of Precision Ag Technologies or Digital Agriculture
Edge Computing and Cloud Solutions
Site-Specific Pasture Management
Precision Agriculture and Global Food Security
Robotics and Automation with Row and Horticultural Crops
Type
Poster
Oral
Year
2012
2018
2022
2024
Home » Authors » Results

Authors

Filter results11 paper(s) found.

1. Mapping the Leaf Area Index In Vineyard Using a Ground-Based LIDAR Scanner

The leaf area index (LAI) is defined as the one-sided leaf area per unit ground area and is probably the most widely used index to characterize grapevine vigour. However, direct LAI measurement requires the use of destructive leaves sampling methods which are costly and time-consuming and so are other indirect methods. Faced with these techniques, vineyard leaf area can be indirectly estimated using ground-based LIDAR sensors that scan the vines and get information about the geometry and/or structure... J. Arno, I. Del moral, A. Escolà, J. Company, J.A. MartÍnez-casasnovas, J. Masip, R. Sanz, J.R. Rosell

2. A New Version of the Nitrogen Trading Tool (NTT) To Assess Nitrogen Management across the USA

A recent study from the USDA Economic Research Service (September 2011) reported that about one-third of U.S. cropland was found to meet the requirements for nutrient... J.A. Delgado, J.C. Ascough ii

3. Prediction of Corn Economic Optimum Nitrogen Rate in Argentina

Static (i.e. texture and soil depth) and dynamic (i.e. soil water, temperature) factors play a role in determining field or subfield economically optimal N rates (EONR). We used 50 nitrogen (N) trials from Argentina at contrasting landscape positions and soil types, various soil-crop measurements from 2012 to 2017, and statistical techniques to address the following objectives: a) characterize corn yield and EONR variability across a multi-landscape-year study in central west Buenos Aires,... L. Puntel, A. Pagani, S. Archontoulis

4. Evaluating APSIM Model for Site-Specific N Management in Nebraska

Many approaches have been developed to estimate the optimal N application rates and increase nitrogen use efficiency (NUE). In particular, in-season and variable-rate fertilizer applications have the potential to apply N during the time of rapid plant N uptake and at the rate needed, thereby reducing the potential for nitrogen fertilizer losses. However, there remains great challenges in determining the optimal N rate to apply in site-specific locations within a field in a given year. Additionally,... L. Thompson, L. Puntel, S. Archontoulis

5. Overcoming Educational Barriers for Precision Agriculture Adoption: a University Diploma in Precision Agriculture in Argentina

The lack of educational programs in Precision Agriculture (PA) has been reported as one of the barriers for adoption. Our goal was to improve professional competence in PA through education in crop variability, management, and effective practices of PA in real cases. In the last 20 years different efforts has been made in Argentina to increase adoption of PA. The Universidad Nacional de Rio Cuarto (UNRC) launched in 2021 the first University Diploma in PA, a 9-month program to train agronomist... G. Balboa, A. Degioanni, R. Bongiovanni, R. Melchiori, C. Cerliani, F. Scaramuzza, M. Bongiovanni, J. Gonzalez, M. Balzarini, H. Videla, S. Amin, G. Esposito

6. Proximal Sensing of Penetration Resistance at a Permanent Grassland Site in Southern Finland

Proximal soil sensing allows for assessing soil spatial heterogeneity at a high spatial resolution. These data can be used for decision support on soil and crop agronomic management. Recent sensor systems are capable of simultaneously mapping several variables, such as soil electrical conductivity (EC), spectral reflectance, temperature, and water content, in real-time. In autumn 2021, we used a commercial soil scanner (Veris iScan+) to derive information on soil spatial variability for a permanent... H.E. Ahrends, A. Lajunen

7. Comparing Global Shutter and Rolling Shutter Cameras for Image Data Collection in Motion on a UGV

In a bid to drive the adoption of precision farming (PF) technology by reducing the cost of developing an Unmanned Ground Vehicle (UGV), during the Reduction-To-Below-Two grand (R2B2) project we compared Arducam’s AR0234, a global shutter camera (GSC) to their IMX462, a rolling shutter camera (RSC). Since the cost of the AR0234 is approximately three times the price of the IMX462, the comparison was done to determine the possibility of using the latter for image data collection in place... J.O. Kemeshi, Y. Chang, P.K. Yadav, M. Alahe

8. Securing Agricultural Data with Encryption Algorithms on Embedded GPU Based Edge Computing Devices

Smart Agriculture (SA) has captured the interest of both the agricultural business and the scientific community in recent years. Overall, SA aims to help the agricultural and food industry to avoid crop failures, loss of revenues as well as help farmers use inputs (such as fertilizers and pesticides) more efficiently by utilizing Internet of Things (IoT) devices and computing systems. However, rapid digitization and reliance on data-driven technologies create new security threats that can defeat... M. Alahe, J.O. Kemeshi, Y. Chang, K. Won, X. Yang, M. Sher

9. Design of an Automatic Travelling Electric Fence System for Sustainable Grazing Management

Fences are used in Precision Livestock Farming (PLF) to prevent herbivores from overgrazing and under grazing forages. While effective in controlling animal entry and exit, traditional fences are not flexible enough to meet the needs of both foraging animals and plants in terms of both nutrient availability and physiological demands. An electric fencing system is a form of traditional fencing that employs an electric charge to create a barrier and dissuade animals or people from crossing it. Even... M. Alahe, Y. Chang, J.O. Kemeshi, S. Gummi, H. Menendez iii

10. Securing Agricultural Imaging Data in Smart Agriculture: a Blockchain-based Approach to Mitigate Cybersecurity Threats and Future Innovations

Smart agriculture (SA) is a new technology that combines the Internet of Things (IoT) with a variety of smart devices, such as drones, unmanned ground vehicles (UGVs), and computer systems. The integration of technology improvements in SA has led to an increase in cybersecurity concerns, specifically pertaining to the protection of sensitive agricultural image data. It’s necessary to better understand SA network systems; establish stronger network structures; identify different types and... M. Alahe, S. Gummi, J.O. Kemeshi, Y. Chang

11. Voronoi-based Ant Colony Optimization Approach: Autonomous Robotic Swarm Navigation for Crop Disease Detection

The early detection of agricultural diseases is essential for sustaining food production and economic viability over the long term. To improve disease detection in agriculture, this paper presents an innovative computational approach that utilizes the Voronoi-based Ant Colony Optimization (V-ACO) algorithm with Swarm Robotics (SR). Inspired by the social behaviors observed in insect colonies such as honeybees and ants, SR offers new opportunities for precision farming. SR utilizes the coordinated... S. Gummi, M. Alahe, Y. Chang, C. Pack