Proceedings

Find matching any: Reset
Cammarano, D
Ghimire, D
Biscaro, A
Fulton, J
Dewdney, M
Basir, M
Khan, H
Claussen, J
Rudnick, D
Kitchen, N.R
Jiang, R
Hopkins, B
Peralta, D
Westfall, D
Add filter to result:
Authors
Shaver, T
Schmer, M
Irmak, S
Van Donk, S
Wienhold, B
Jin, V
Bereuter, A
Francis, D
Rudnick, D
Ward, N
Hendrickson, L
Ferguson, R.B
Adamchuk, V.I
Yao, Y
Miao, Y
Huang, S
Gnyp, M.L
Khosla, R
Jiang, R
Bareth, G
Basso, B
Fiorentino, C
Cammarano, D
D'Errico, A
Moshia, M.E
Khosla, R
Davis, J
Westfall, D
Yao, Y
Miao, Y
Huang, S
Gnyp, M.L
Jiang, R
Chen, X
Bareth, G
Shaver, T
Khosla, R
Westfall, D
Peterson, G
Westfall, D
Sherrod, L.A
Biscaro, A
Orloff, S
Stevens, L.J
Ferguson, R.B
Franzen, D.W
Kitchen, N.R
Bean, G
Kitchen, N.R
Franzen, D.W
Miles, R.J
Ransom, C
Scharf, P
Camberato, J
Carter, P
Ferguson, R.B
Fernandez, F.G
Laboski, C
Nafziger, E
Sawyer, J
Shanahan, J
Colley III, R
Fulton, J
Douridas, N
Port, K
Claussen, J
Wörlein, N
Uhlmann, N
Gerth, S
Colley III, R
Fulton, J
Virk, S
Hawkins, E
Sudduth, K.A
Kitchen, N.R
Vories, E.D
Drummond, S.T
Cammarano, D
Drexler, D
Hinsinger, P
Martre, P
Draye, X
Sessitsch, A
Pecchioni, N
Cooper, J
Helga, W
Voicu, A
Colley III, R
Lin, Y
Fulton, J
Shearer, S
Lee, J
Fulton, J
Port, K
Colley III, R
Ransom, C.J
Vong, C
Veum, K.S
Sudduth, K.A
Kitchen, N.R
Zhou, J
Turner, I
Kerry, R
Jensen, R
Woolley, E
Hansen, N
Hopkins, B
Li, D
Miao, Y
Fernández, .G
Kitchen, N.R
Ransom, C.
Bean, G.M
Sawyer, .E
Camberato, J.J
Carter, .R
Ferguson, R.B
Franzen, D.W
Franzen, D.W
Franzen, D.W
Franzen, D.W
Laboski, C.A
Nafziger, E.D
Shanahan, J.F
Mizuta, K
Miao, Y
Morales, A.C
Lacerda, L.N
Cammarano, D
Nielsen, R.L
Gunzenhauser, R
Kuehner, K
Wakahara, S
Coulter, J.A
Mulla, D.J
Quinn, D.
McArtor, B
Khan, H
Esau, T
Farooque, A
Abbas, F
De Waele, T
Peralta, D
Shahid, A
De Poorter, E
Ghimire, D
Maharjan, B
Frederick, Q
Burks, T
Yadav, P.K
Dewdney, M
Qin, J
Kim, M
Castiblanco Rubio, F.A
Basir, M
Balmos, A
Krogmeier, J
Buckmaster, D
Topics
Spatial Variability in Crop, Soil and Natural Resources
Sensor Application in Managing In-season Crop Variability
Remote Sensing Applications in Precision Agriculture
Precision Nutrient Management
Sensor Application in Managing In-season Crop Variability
Precision Carbon Management
Spatial Variability in Crop, Soil and Natural Resources
Sensor Application in Managing In-season CropVariability
Precision Nutrient Management
Big Data, Data Mining and Deep Learning
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Site-Specific Nutrient, Lime and Seed Management
Decision Support Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Drainage Optimization and Variable Rate Irrigation
ISPA Community: Nitrogen
In-Season Nitrogen Management
Precision Agriculture and Global Food Security
Big Data, Data Mining and Deep Learning
Artificial Intelligence (AI) in Agriculture
Edge Computing and Cloud Solutions
Type
Poster
Oral
Year
2012
2010
2014
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results26 paper(s) found.

1. Precision Manure Management: It Matters Where You Put Your Manure

“Precision fertilizer management” has been around for more than a decade and is practiced widely in Colorado and elsewhere. By precision, we mean application of fertilizer at the right time, in the right place, and in the right amount. However, “Precision Manure Management” is a relatively new concept that converge the best manure management practices with precision nutrient management practices, such as variable rate nutrient application across site-specific management... M.E. Moshia, R. Khosla, J. Davis, D. Westfall

2. Developing An Active Crop Sensor-based In-season Nitrogen Management Strategy For Rice In Northeast China

  Crop sensor-based in-season N management strategies have been successfully developed and evaluated for winter wheat around the world, but little has been reported for rice. The objective of this study was to develop an active crop sensor-based in-season N management strategy for upland rice in Northeast... Y. Yao, Y. Miao, S. Huang, M.L. Gnyp, R. Jiang, X. Chen, G. Bareth

3. Development Of A Nitrogen Requirement Algorithm Using Ground-based Active Remote Sensors In Irrigated Maize

Studies have shown that normalized difference vegetation index (NDVI) from ground-based active remote sensors is highly related with leaf N content in maize (Zea mays). Remotely sensed NDVI imagery can provide valuable information about in-field N variability in maize and significant linear relationships between sensor NDVI and maize grain yield have been found suggesting that an N recommendation algorithm based on NDVI could optimize N application. Therefore, a study was conducted using the two... T. Shaver, R. Khosla, D. Westfall

4. Landscape Position And Climatic Gradient Impacts On Carbon Turnover in Dryland Cropping Systems in Colorado

  Soil organic carbon has decreased in cultivated wheat-fallow systems due to increased carbon oxidation, low carbon input and soil erosion.  Implementation of more intensive cropping with no-till management has reversed the trend in soil carbon loss.  Our objective in this presentation is to review the effects of landscape position on soil carbon status as related to intensification of cropping system.  Our analysis will... G. Peterson, D. Westfall, L.A. Sherrod

5. Site-specific Phosphorus And Potassium Fertilization Of Alfalfa: Fertilizer Usage And Sampling Density Comparison

Alfalfa accounts for the largest cropping area in both the High Desert and Intermountain regions in California, and the use of site-specific management (SSM) can potentially improve farmers’ fertilization practices and crop nutritional status. These areas have limited to no studies regarding nutrient SSM, and variable rate (VR) fertilizer application has not been commonly used by farmers in either area. Considerable range of soil nutrient levels have... A. Biscaro, S. Orloff

6. Landscape Influences on Soil Nitrogen Supply and Water Holding Capacity for Irrigated Corn

... T. Shaver, M. Schmer, S. Irmak, S. Van donk, B. Wienhold, V. Jin, A. Bereuter, D. Francis, D. Rudnick, N. Ward, L. Hendrickson, R. Ferguson, V.I. Adamchuk

7. In-season Diagnosis of Rice Nitrogen Status Using an Active Canopy Sensor

... Y. Yao, Y. Miao, S. Huang, M. Gnyp, R. Khosla, R. Jiang, G. Bareth

8. Understanding Spatial and Temporal Variability of Wheat Yield: An Integrated System Approach

Spatial variation in soil water and nitrogen are often the causes of crop yield spatial variability due to their influence on the uniformity of plant stand at emergence and for in-season stresses. Natural and acquired variability in production capacity or potential within a field causes uniform agronomic management practices for the field to be correct in some parts and inappropriate in others. To achieve... B. Basso, C. Fiorentino, D. Cammarano, A. D'errico

9. In-Season Nitrogen Requirement For Maize Using Model And Sensor-Based Recommendation Approaches

Nitrogen (N), an essential element, is often limiting to plant growth.  There is great value in determining the optimum quantity and timing of N application to meet crop needs while minimizing losses.  Low nitrogen use efficiency (NUE) has been attributed to several factors including poor synchrony between N fertilizer and crop demand, unaccounted for spatial variability resulting in varying crop N needs, and temporal variances in crop N needs.  Applying a portion... L.J. Stevens, R.B. Ferguson, D.W. Franzen, N.R. Kitchen

10. Modifying the University of Missouri Corn Canopy Sensor Algorithm Using Soil and Weather Information

Corn production across the U.S. Corn belt can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N uptake (V7-V11), reducing the amount of N lost to these processes. However, N recommendation algorithms used in conjunction with canopy sensor measurements have not proven accurate in making N recommendations... G. Bean, N.R. Kitchen, D.W. Franzen, R.J. Miles, C. Ransom, P. Scharf, J. Camberato, P. Carter, R.B. Ferguson, F. Fernandez, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

11. On-Farm Digital Solutions and Their Associated Value to North American Farmers

Digital tools and data collection have become standard in a wide variety of present day agricultural operations. An array of digital tools, such as high resolution operational mapping, remote sensing, and farm management software offer solutions to many of the problems in modern agriculture. These technologies and services can, if implemented correctly, provide both immediate and long term agronomic value. A growing number of producers in Ohio and around North America question the proper method... R. Colley iii, J. Fulton, N. Douridas, K. Port

12. Quantification of Seed Performance: Non-Invasive Determination of Internal Traits Using Computed Tomography

The application of the 3D mean-shift filter to 3D Computed Tomography Data enables the segmentation of internal traits. Specifically in maize seeds this approach gives the opportunity to separate the internal structure, for example the volume of the embryo, the cavities and the low and high dense parts of the starch body. To evaluate the mean-shift filter, the results were compared to the usage of a median-smoothing filter. To show the relevance of the mean-shift extended image pipeline an automatic... J. Claussen, N. Wörlein, N. Uhlmann, S. Gerth

13. Field Level Management and Data Verification of Variable Rate Fertilizer Application

Increased cost efficiencies and ease of use make spinner-disc spreaders the primary method of applying fertilizers throughout much of the United States. Recently, advances in spreader systems have enabled multiple fertilizer products to be applied at variable application rates. This provides greater flexibility during site-specific management of in-field fertility. Physical and aerodynamic properties vary for fertilizer granules of different sources and densities, these properties in turn affect... R. Colley iii, J. Fulton, S. Virk, E. Hawkins

14. Compensating for Soil Moisture Effects in Estimation of Soil Properties by Electrical Conductivity Sensing

Bulk apparent soil electrical conductivity (ECa) is the most widely used soil sensing modality in precision agriculture. Soil ECa relates to multiple soil properties, including clay content (i.e., texture) and salt content (i.e., salinity). However, calibrations of ECa to soil properties are not temporally stable, due in large part to soil moisture differences between measurement dates. Therefore, the objective of this research was to investigate the effects of temporal soil moisture variations... K.A. Sudduth, N.R. Kitchen, E.D. Vories, S.T. Drummond

15. Shared Protocols and Data Template in Agronomic Trials

Due to the overlap of many disciplines and the availability of novel technologies, modern agriculture has become a wide, interdisciplinary endeavor, especially in Precision Agriculture. The adoption of a standard format for reporting field experiments can help researchers to focus on the data rather than on re-formatting and understanding the structure of the data. This paper describes how a European consortium plans to: i) create a “handbook” of protocols for reporting definitions,... D. Cammarano, D. Drexler, P. Hinsinger, P. Martre, X. Draye, A. Sessitsch, N. Pecchioni, J. Cooper, W. Helga, A. Voicu

16. Development of a Graphical User Interface for Spinner-Disc Spreader Calibration and Spread Uniformity Assessment

Broadcast fertilizer distribution through spinner-disc spreaders remain the most cost-effective, and least time consuming process to apply the needed soil amendments for the next crop. Spreaders currently available to producers enable them to apply a variety of granular products at varying rates, blends, and swath widths. In order to uniformly apply granular fertilizer or lime, the spreader should be calibrated by standard pan testing with any change in spreader settings, application rate, or... R. Colley iii, Y. Lin, J. Fulton, S. Shearer

17. Overview and Value of Digital Technologies for North American Soybean Producers

In the current state of digital agriculture, many digital technologies and services are offered to assist North American soybean producers.  Opportunities for capturing and analyzing information related to soybean production methods are made available through the adoption of these technologies.  However, often it is difficult for producers to know which digital tools and services are available to them or understand the value they can provide.  The objective of this... J. Lee, J. Fulton, K. Port, R. Colley iii

18. Estimating Soil Carbon Stocks with In-field Visible and Near-infrared Spectroscopy

Agricultural lands can be a sink for carbon and play an important role in offsetting carbon emissions. Current methods of measuring carbon sequestration—through repeated temporal soil samples—are costly and laborious. A promising alternative is using visible, near-infrared (VNIR) diffuse reflectance spectroscopy. However, VNIR data are complex, which requires several data processing steps and often yields inconsistent results, especially when using in situ VNIR measurements. Using... C.J. Ransom, C. Vong, K.S. Veum, K.A. Sudduth, N.R. Kitchen, J. Zhou

19. Investigation of Automated Analysis of Snowmelt from Time-series Sentinel 2 Imagery to Inform Spatial Patterns of Spring Soil Moisture in the American Mountain West

Variable rate irrigation of crops is a promising approach for saving water whilst maintaining crop yields in the semi-arid American Mountain West – much of which is currently experiencing a mega drought. The first step in determining irrigation zones involves characterizing the patterns of spatial variation in soil moisture and determining if these are relatively stable temporally in relation to topographic features and soil texture. Characterizing variable rate irrigation zones is usually... I. Turner, R. Kerry, R. Jensen, E. Woolley, N. Hansen, B. Hopkins

20. Developing a Machine Learning and Proximal Sensing-based In-season Site-specific Nitrogen Management Strategy for Corn in the US Midwest

Effective in-season site-specific nitrogen (N) management strategies are urgently needed to ensure both food security and sustainable agricultural development. Different active canopy sensor-based precision N management strategies have been developed and evaluated in different parts of the world. Recent studies evaluating several sensor-based N recommendation algorithms across the US Midwest indicated that these locally developed algorithms generally did not perform well when used broadly across... D. Li, Y. Miao, .G. Fernández, N.R. Kitchen, C. . Ransom, G.M. Bean, .E. Sawyer, J.J. Camberato, .R. Carter, R.B. Ferguson, D.W. Franzen, D.W. Franzen, D.W. Franzen, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.F. Shanahan

21. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and Indiana

Precision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minnesota.... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor

22. Suitability of ML Algorithms to Predict Wild Blueberry Harvesting Losses

The production of wild blueberries (Vaccinium angustifolium.) is contributing 112.2 million dollars to the Canada’s revenue which can be further increased through controlling harvest losses. A precise prediction of blueberry harvesting losses is necessary to mitigate such losses. In this study, the performance of three machine learning (ML) models was evaluated to predict the wild blueberry harvest losses on the ground. The data from four commercial fields in Atlantic Canada were... H. Khan, T. Esau, A. Farooque, F. Abbas

23. Supervised Feature Selection and Clustering for Equine Activity Recognition

In this paper we introduce a novel supervised algorithm for equine activity recognition based on accelerometer data. By combining an approach of calculating a wide variety of time-series features with a supervised feature significance test we can obtain the best suited features using just 5 labeled samples per class and without requiring any expert domain knowledge. By using a simple cluster assignment algorithm with these obtained features, we get a classification algorithm that achieves a mean... T. De waele, D. Peralta, A. Shahid, E. De poorter

24. Assessment of Active Crop Canopy Sensor As a Tool for Optimal Nitrogen Management in Dryland Winter Wheat

Optimum nitrogen (N) fertilizer application is important for agronomic, economic, and environmental reasons. Among different N management tools, active crop canopy sensors are a recent and promising tool widely evaluated for use in corn but still under-evaluated for use in winter wheat. The objective of this study was to determine whether vegetation indices derived from in-season active crop canopy sensor data can be used to predict winter wheat grain yield and protein content and subsequently... D. Ghimire

25. Supervised Hyperspectral Band Selection Using Texture Features for Classification of Citrus Leaf Diseases with YOLOv8

Citrus greening disease (HLB), a disease caused by bacteria of the Candidatus Liberibacter group, is characterized by blotchy leaves and smaller fruits. Causing both premature fruit drop and eventual tree death, HLB is a novel and significant threat to the Florida citrus industry.  Citrus canker is another serious disease caused by the bacterium Xanthomonas citri subsp. citri (syn. X. axonopodis pv. citri) and causes economic losses for growers from fruit drops and blemishes. Citrus canker... Q. Frederick, T. Burks, P.K. Yadav, M. Dewdney, J. Qin, M. Kim

26. Avena: an Event-driven Software Framework for Informed Decisions and Actions in Cropping Systems

Interoperability is one of the enabling factors of real-time communications and data exchange between asynchronous data actors. Interoperability can be attained by introducing events to systems that extract data from consumed ground-truth event streams that utilize application-specific structures. Events are specific occurrences happening at a particular time and place. Event-data are observations of phenomena, or actions, as seen by different systems in Internet of Things (IoT) deployments, independent... F.A. Castiblanco rubio, M. Basir, A. Balmos, J. Krogmeier, D. Buckmaster