Proceedings
Authors
| Filter results11 paper(s) found. |
|---|
1. Application Of Precision Agriculture In Carbon Farming Practices Using The Real-time Soil Sensor... Y. Li |
2. Economic Evaluation of a Variable Lime Application Strategy Based on Soil pH Maps Derived from On-The-Go pH-Measurements under German Conditions... A. Borchert, G. Recke, D. Dabbelt, D. Trautz, H. Olfs |
3. UAV-based Crop Scouting for Precision Nutrient ManagementPrecision agriculture – is one of the most substantial markets for the Unmanned Aerial Vehicles (UAVs). Mounted on the UAVs, sensors and cameras enable rapid screening of large numbers of experimental plots to identify crop growth habits that contribute to final yield and quality in a variety of environments. Wheat is one of the Idaho’s most important cereal crops grown in 42 of 44 Idaho counties. We are working on establishing a UAV-based methodology for in-season prediction of wheat... O.S. Walsh, K. Belmont, J. Mcclintick-chess, J. Marshall, C. Jackson, C. Thompson, K. Swoboda |
4. Sensor-based Technologies for Improving Water and Nitrogen Use EfficiencyLimited reports exist on identifying the empirical relationships between plant nitrogen and water status with hyperspectral reflectance. This project is aiming to develop effective system for nitrogen and water management in wheat. Specifically: 1) To evaluate the effects of nitrogen rates and irrigation treatments on wheat plant growth and yield; 2) To develop methods to predict yield and grain protein content in varying nitrogen and water environments, and to determine the minimum nitrogen... O.S. Walsh, K. Belmont, J. Mcclintick-chess |
5. Canopy Temperature Mapping with a Vineyard RobotThe wine industry is a strategic sector in many countries worldwide. High revenues in the wine market typically result in higher investments in specialized equipment, so that producers can introduce disruptive technology for increasing grape production and quality. However, many European producers are approaching retirement age, and therefore the agricultural sector needs a way for attracting young farmers who can assure the smooth transition between generations; digital technology offers an opportunity... V. Saiz-rubio, M. Diago, J. Tardaguila, S. Gutierrez, F. Rovira-más, F. Alves |
6. Development of Farmland-Terrain Simulation System for Consistency of Seeding DepthA farmland-terrain simulation system suitable for rugged topography was designed to study the irregularities of farmland surface morphology led by both topographic fluctuation and terrain tilt. The system consists of terrain simulation mechanism, hydraulic system, control system, etc. The terrain simulation mechanism is connected to the rack through hydraulic cylinder to simulate farmland surface fluctuation. The hydraulic system controls the hydraulic cylinder to drive the terrain simulation... W. Fu, J. Dong, Y. Cong, N. Gao, Y. Li, Z. Meng |
7. A Generative Adversarial Network-based Method for High Fidelity Synthetic Data AugmentationDigital Agriculture has led to new phenotyping methods that use artificial intelligence and machine learning solutions on image and video data collected from lab, greenhouse, and field environments. The availability of accurately annotated image and video data remains a bottleneck for developing most machine learning and deep learning models. Typically, deep learning models require thousands of unique samples to accurately learn a given task. However, manual annotation of a large dataset will... S. Sridharan, S. Sornapudi, Q. Hu, S. Kumpatla, J. Bier |
8. Assessing the Potential of Sentinel-1 in Retrieving Mango Phenology and Investigating Its Relation to Weather in Southern GhanaThe rise in global production of horticultural tree crops over the past few decades is driving technology-based innovation and research to promote productivity and efficiency. Although mango production is on the rise, application of the remote sensing technology is generally limited and the available study on retrieving mango phenology stages specifically, was focused on the application of optical data. We therefore sought to answer the questions; (1) can key phenology stages of mango be retrieved... B.A. Torgbor, M.M. Rahman, A. Robson, J. Brinkhoff |
9. Evaluation of a Single Transect Method for Collecting Grape Samples Based on Sentinel-2 Imagery for the Characterization of Overall Vineyard PerformanceCommercial vineyards are streamed into different wine programs based on analysis of grape or juice samples collected from the field, but spatial and temporal variability can lead to sub-optimal tiering of grapes. This is a particularly difficult problem to overcome in the typically large vineyards of California’s Central Valley. Due to economic and laboratory constraints on sample collection, processing, and analysis, a single sample is often expected to represent the overall fruit quality... B. Sams, M. Aboutalebi, L. Sanchez, N. Dokoozlian, R. Bramley |
10. Bio-Effectors As a Promising Tool for Precision Agriculture and Integrated Plant NutritionBio-effectors, such as microorganisms and active natural compounds, are of increasing interest as promising alternatives or substitutes to precarious agrochemicals. European and global markets (valued at 14.6 billion US$ in 2023) for agricultural biologicals (bio-pesticides, bio-fertilizers, and bio-stimulants) are predicted to grow at rates of more than 13.5 % per year. Improved availability and use efficiency of mineral nutrients, tolerance to abiotic stresses, yield and quality traits, as well... M. Weinmann, M. Nkebiwe, N. Weber, K. Bradacova, N. Morad-talab, U. Ludewig, T. Müller, G. Neumann, M. Raupp, K. Bradacova |
11. Spectral Imaging Deep Learning Mapper for Precision AgricultureWith the growing variety of RGB cameras, spectral sensors, and platforms like field robots or unmanned aerial vehicles (UAV) in precision agriculture, there is a demand for straightforward utilization of collected field data. In recent years, deep learning has gained significant attention and delivered impressive results in the realm of computer vision tasks, such as semantic segmentation. These models have also found extensive applications in research related to precision agriculture and spectral... L. Thomas, B. Jakimow, A. Janz, P. Hostert, A. Lajunen |