Proceedings
Authors
| Filter results9 paper(s) found. |
|---|
1. Data-Driven Agricultural Machinery Activity Anomaly Detection and ClassificationIn modern agriculture, machinery has become the one of the necessities in providing safe, effective and economical farming operations and logistics. In a typical farming operation, different machines perform different tasks, and sometimes are used together for collaborative work. In such cases, different machines are associated with representative activity patterns, for example, in a harvest scenario, combines move through a field following regular swaths while grain carts follow irregular paths... Y. Wang, A. Balmos, J. Krogmeier, D. Buckmaster |
2. Use Cases for Real Time Data in AgricultureAgricultural data of many types (yield, weather, soil moisture, field operations, topography, etc.) comes in varied geospatial aggregation levels and time increments. For much of this data, consumption and utilization is not time sensitive. For other data elements, time is of the essence. We hypothesize that better quality data (for those later analyses) will also follow from real-time presentation and application of data for it is during the time that data is being collected that errors can be... J. Krogmeier, D. Buckmaster, A. Ault, Y. Wang, Y. Zhang, A. Layton, S. Noel, A. Balmos |
3. Improving Winter Wheat Nitrogen Status Monitoring Using Proximal Canopy Sensing and Agrometeorological Information with Machine LearningTimely and accurate diagnosis of winter wheat nitrogen (N) status plays an important role in guiding precision N management. This study aims to combine proximal canopy sensing and agrometeorological information to establish a reliable winter wheat plant N concentration (PNC) monitoring model with seven machine learning (ML) algorithms (Random Forest Regression (RFR), Support Vector Regression (SVR), K-Nearest Neighbors Regression (KNNR), Partial Least Squares Regression (PLSR), Gradient Boosting... X. Chen, Y. Miao, K. Yu, Q. Chang, F. Li |
4. Data-driven Agriculture and Sustainable Farming: Friends or Foes?Sustainability in our food and fiber agriculture systems is inherently knowledge intensive. It is more likely to be achieved by using all the knowledge, technology, and resources available, including data-driven agricultural technology and precision agriculture methods, than by relying entirely on human powers of observation, analysis, and memory following practical experience. Data collected by sensors and digested by artificial intelligence (AI) can help farmers learn about synergies... O. Rozenstein, Y. Cohen, V. Alchanatis , K. Behrendt, D.J. Bonfil, G. Eshel, A. Harari, W.E. Harris, I. Klapp, Y. Laor, R. Linker, T. Paz-kagan, S. Peets, M.S. Rutter, Y. Salzer, J. Lowenberg-deboer |
5. OATSmobile: a Data Hub for Underground Sensor Communications and Rural IoTWireless Underground Sensor Networks (WUSNs) play a crucial role in precision agriculture by providing information about moisture levels, temperature, nutrient availability, and other relevant factors. However, the use of radio-frequency identification (RFID) devices for WUSNs has been relatively unexplored despite their benefits such as low power consumption. In this work, we develop a hardware platform, called OATSMobile, that enables radio-frequency identification (RFID) communications in WUSNs.... F.A. Castiblanco rubio, A. Arun, B. Lee, A. Balmos, S. Jha, J. Krogmeier, D.J. Love, D. Buckmaster |
6. Avena: an Event-driven Software Framework for Informed Decisions and Actions in Cropping SystemsInteroperability is one of the enabling factors of real-time communications and data exchange between asynchronous data actors. Interoperability can be attained by introducing events to systems that extract data from consumed ground-truth event streams that utilize application-specific structures. Events are specific occurrences happening at a particular time and place. Event-data are observations of phenomena, or actions, as seen by different systems in Internet of Things (IoT) deployments, independent... F.A. Castiblanco rubio, M. Basir, A. Balmos, J. Krogmeier, D. Buckmaster |
7. Use of Crop and Drought Spectral Indices to Support Harvest Decisions of Peanut Fields in AlabamaHarvest efficiency expressed in quantity and quality of peanut fields could increase if farmers are provided with tools to support harvest decisions. Peanut farmers still rely on a visual and empiric method to assess the right time of peanut maturity but this method does not account for within-field variability of crop growth and maturity. The integration of spectral vegetation indices to assess drought, soil moisture, and crop growth to predict peanut maturity can help farmers strengthen decisions... M.F. Oliveira, B.V. Ortiz, E. Hanyabui, J.B. Costa souza, A. Sanz-saez, S. Luns hatum de almeida , C. Pilcon, G. Vellidis |
8. Design of an Autonomous Ag Platform Capable of Field Scale Data Collection in Support of Artificial IntelligenceThe Pivot+ Array is intended to serve as an innovative, multi-user research platform dedicated to the autonomous monitoring, analysis, and manipulation of crops and inputs at the plant scale, covering extensive areas. It will effectively address many constraints that have historically limited large-scale agricultural sensor and robotic research. This achievement will be made possible by augmenting the well-established center pivot technology, known for its autonomy, with robust power infrastructure,... S. Jha, J. Krogmeier, D. Buckmaster, D.J. Love, R.H. Grant, M. Crawford, C. Brinton, C. Wang, D. Cappelleri, A. Balmos |
9. Enabling Field-level Connectivity in Rural Digital Agriculture with Cloud-based LoRaWANThe widespread adoption of next-generation digital agriculture technologies in rural areas faces a critical challenge in the form of inadequate field-level connectivity. Traditional approaches to connecting people fall short in providing cost-effective solutions for many remote agricultural locations, exacerbating the digital divide. Current cellular networks, including 5G with millimeter wave technology, are urban-centric and struggle to meet the evolving digital agricultural needs, presenting... Y. Zhang, J. Bailey, A. Balmos, F.A. Castiblanco rubio, J. Krogmeier, D. Buckmaster, D. Love, J. Zhang, M. Allen |