Proceedings
Authors
| Filter results12 paper(s) found. |
|---|
1. Sectioning And Assessment Remote Images For Precision Agriculture: The Case Of Orobanche Crenate In Pea CropThe software SARI® has been developed to implement precision agriculture strategies through remote sensing imagery. It is written in IDL® and works as an add-on of ENVI®. It has been designed to divide remotely sensed imagery into “micro-images”, each corresponding to a small area (“micro-plot”), and to determine the quantitative agronomic and/or environmental biotic (i.e. weeds, pathogens) and/or non-biotic (i.e. nutrient levels) indicator/s... L. Garcia-torres, D. Gomez-candon, J.J. Caballero-novella, M. Gomez-casero, J.M. Pe, M. Jurado-exp, F. Lopez-granados, I. Castillejo-gonz, A. Garc |
2. Management Of Remote Imagery For Precision AgricultureSatellite and airborne remotely sensed images cover large areas, which normally include dozens of agricultural plots. Agricultural operations such as sowing, fertilization, and pesticide applications are designed for the whole plot area, i.e. 5 to 20 ha, or through precision agriculture. This takes into account the spatial variability of biotic and of abiotic factors and uses diverse technologies to apply inputs at variable rates, fitted to the needs of each small defined area, i.e. 25 to 200... L. Garcia-torres, D. Gomez-candon, J.J. Caballero-novella, J.M. Pe, M. Jurado-exp, I. Castillejo-gonz, A. Garc, F. Lopez-granados, L. Prassack |
3. The TOAS Project: UAV Technology For Optimizing Herbicide Applications In Weed-Crop SystemsSite-specific weed management refers to the application of customised control treatments, mainly herbicide, only where weeds are located within the crop-field. In this context, the TOAS project is being developed under the financial support of the European Commission with the main objective of generating georeferenced weed infestation maps of certain herbaceous (corn and sunflower) and permanent woody crops (poplar and olive orchards) by using aerial images collected by an unmanned aerial... J.M. Peña, J. Torres-sanchez, A.I. De castro, J. Dorado, F. Lopez-granados |
4. Survey Shows Specialty and Commodity Crop Retailers Use Precision Agriculture DifferentlyThe 2021 CropLife-Purdue Survey of precision agricultural practices by US agricultural input dealers serving the American grain and oilseed sector shows that most of them use GPS guidance and related technologies like sprayer boom control, most provide variable rate fertilizer services, and the majority say that fertilizer decisions are influenced by grower data. In contrast, dealers serving horticultural and specialty crop farms indicate comparatively modest adoption of many precision agriculture... B.J. Erickson, J. Lowenberg-deboer |
5. The ISO Strategic Advisory Group for Smart Farming: a Multi-pronged Opportunity for Greater Global InteroperabilityAgriculture is becoming increasingly complex and producers must secure their profitability, sustainability, and freedom to operate under a progressively more challenging set of constraints such as climate change, regulatory pressure, changes in consumer preferences, increasing cost of inputs, and commodity price volatility. We have not, however, yet reached the level of data interoperability required for a truly "smart" farming that can tackle the aforementioned problems... R. Ferreyra, J. Lehmann |
6. Profitability of Regenerative Cropping with Autonomous Machines: an Ex-ante Assessment of a British Crop-livestock FarmFarmers, agroecological innovators and research have suggested mixed cropping as a way to promote soil health. Mixing areas of different crops in the same field is another form of precision agriculture's spatial and temporal management. The simplest form of mixed cropping is strip cropping. In conventional mechanized farming use of mixed cropping practices (i.e., strip cropping, pixel cropping) is limited by labour availability, rising wage rates, and management complexity. Regenerative agriculture... A. Al amin, J. Lowenberg-deboer, K.F. Franklin, E. Dickin, J. Monaghan, K. Behrendt |
7. Global Adoption of Precision Agriculture: an Update on Trends and Emerging TechnologiesThe adoption of precision agriculture (PA) has been mixed. Some technologies (e.g., Global Navigation Satellite System (GNSS) guidance) have been adopted rapidly worldwide wherever there is mechanized agriculture. Adoption of some of the original PA technologies introduced in the 1990s has been modest almost everywhere (e.g., variable rate fertilizer). New and more advanced technologies based on robotics, uncrewed aerial vehicles (UAVs), machine vision, co-robotic automation, and artificial intelligence... J. Mcfadden, B. Erickson, J. Lowenberg-deboer, G. Milics |
8. A Multi-objective Optimisation Analysis of Virtual Fencing in Precision GrazingVirtual fencing is a precision livestock farming tool consisting of invisible boundaries created via Global Navigation Satellite Systems (GNSS) and managed remotely and in real time by app-based technology. Grazing livestock are equipped with battery-powered collars capable of delivering audio or vibration cues and possibly electric shocks when approaching or crossing an invisible boundary. Virtual fencing makes precision grazing possible without the need for physical fences. This technology originated... E. Maritan, K. Behrendt, J. Lowenberg-deboer, S. Morgan, M.S. Rutter |
9. Who Are the Data Stewards: Moving Data Driven Agriculture ForwardNearly a decade ago agricultural equipment manufacturers, service providers, retailers, land grant universities, and grower organizations came together to begin discussing the growing needs for producers to manage their farm data. This discussion was partly fueled by the industry shifting from moving data via physical media to cloud API connections. Several initiatives including the Agricultural Data Coalition (ADC) were subsequently launched focusing on addressing data privacy and security concerns... B.E. Craker, D. Bierman |
10. Data-driven Agriculture and Sustainable Farming: Friends or Foes?Sustainability in our food and fiber agriculture systems is inherently knowledge intensive. It is more likely to be achieved by using all the knowledge, technology, and resources available, including data-driven agricultural technology and precision agriculture methods, than by relying entirely on human powers of observation, analysis, and memory following practical experience. Data collected by sensors and digested by artificial intelligence (AI) can help farmers learn about synergies... O. Rozenstein, Y. Cohen, V. Alchanatis , K. Behrendt, D.J. Bonfil, G. Eshel, A. Harari, W.E. Harris, I. Klapp, Y. Laor, R. Linker, T. Paz-kagan, S. Peets, M.S. Rutter, Y. Salzer, J. Lowenberg-deboer |
11. AgGateway Traceability API – The Foundation to Track Raw Agricultural CommoditiesThere is increasing demand for food traceability, ranging from consumers wanting to know where their food comes from (GMO, organic, climate-smart commodities), to manufacturers of agricultural inputs wanting to know the effectiveness of their products as used by farmers. Existing traceability requirements focus on the supply chain of goods packaged from their origin to retail grocery stores, with regulations provided by the Food Safety Modernization Act (FSMA) from the US Food and Drug Administration... S.T. Nieman, J. Tevis, B.E. Craker |
12. National Agricultural Producers Data Cooperative - Sponsor Presentation... B.E. Craker |