Proceedings

Find matching any: Reset
Chen, X
Balmos, A
Luns Hatum de Almeida , S
Peets, S
Gerken, A.R
Kulhandjian, M
Andrade, J
Abu Seman, I
Kieffer, D
Add filter to result:
Authors
Kieffer, D
Dallago, G.M
Figueiredo, D
Santos, R
Santos, D
Guimarães, L
Santos, C
Castro, T
Santos, A
Otoni, L
Andrade, J
Bejo, S
Abdol Lajis, G
Abd Aziz, S
Abu Seman, I
Ahamed, T
Wang, Y
Balmos, A
Krogmeier, J
Buckmaster, D
Krogmeier, J
Buckmaster, D
Ault, A
Wang, Y
Zhang, Y
Layton, A
Noel, S
Balmos, A
Chen, X
Miao, Y
Yu, K
chang, Q
li, F
Kulhandjian, H
Kulhandjian, M
Rocha, D
Bennett, B
Kulhandjian, H
Kulhandjian, M
Rocha, D
Bennett , B
Kulhandjian, H
Amely, N
Kulhandjian, M
Rozenstein, O
Cohen, Y
Alchanatis , V
Behrendt, K
Bonfil, D.J
Eshel, G
Harari, A
Harris, W.E
Klapp, I
Laor, Y
Linker, R
Paz-Kagan, T
Peets, S
Rutter, M.S
Salzer, Y
Lowenberg-DeBoer, J
Castiblanco Rubio, F.A
Arun, A
Lee, B
Balmos, A
Jha, S
Krogmeier, J
Love, D.J
Buckmaster, D
Castiblanco Rubio, F.A
Basir, M
Balmos, A
Krogmeier, J
Buckmaster, D
Oliveira, M.F
Ortiz, B.V
Hanyabui, E
Costa Souza, J.B
Sanz-Saez, A
Luns Hatum de Almeida , S
Pilcon, C
Vellidis, G
Jha, S
Krogmeier, J
Buckmaster, D
Love, D.J
Grant, R.H
Crawford, M
Brinton, C
Wang, C
Cappelleri, D
Balmos, A
Zhang, Y
Bailey, J
Balmos, A
Castiblanco Rubio, F.A
Krogmeier, J
Buckmaster, D
Love, D
Zhang, J
Allen, M
Armstrong, P.R
Pordesimo, L.O
Siliveru, K
Gerken, A.R
Serfa Juan, R.O
Topics
Precision A-Z for Practitioners
Precision Dairy and Livestock Management
Precision Crop Protection
Big Data, Data Mining and Deep Learning
Profitability and Success Stories in Precision Agriculture
In-Season Nitrogen Management
Robotics and Automation with Row and Horticultural Crops
Artificial Intelligence (AI) in Agriculture
Drivers and Barriers to Adoption of Precision Ag Technologies or Digital Agriculture
Wireless Sensor Networks and Farm Connectivity
Edge Computing and Cloud Solutions
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Big Data, Data Mining and Deep Learning
Type
Poster
Oral
Year
2010
2018
2024
Home » Authors » Results

Authors

Filter results16 paper(s) found.

1. Effect Of Sub-surface Drip Irrigation And Shade On Soil Moisture Uniformity In Residential Turf

Sub-surface irrigation in turf has advantages over traditional sprinkler systems. Evapotranspiration is reduced and water applied below the root zone promotes deeper root growth. Auditing such applications requires measurement of root-zone soil moisture. Data was taken in 2008 and 2009 on a private lawn in northern California that had just been rebuilt to include both sub-surface drip and overhead spray irrigation systems. A portable wave reflectometer was used to take geo-referenced soil moisture... D. Kieffer

2. Time Series Analysis of Somatic Cell Count from Dairy Herds in Minas Gerais - Brazil

The objective of this study was to analyze the temporal variation of somatic cell count (SCC) in milk of dairy cows from the state of Minas Gerais, Brazil. The Holstein Livestock Breeders Association of Minas Gerais provided data collected from 128 dairy farms located in the state of Minas Gerais between the years of 2000 and 2016. The database contains the SCC average of a total of 91,851 305-day lactations of Holstein animals. The annual SCC average was calculated as well as the percentage of... G.M. Dallago, D. Figueiredo, R. Santos, D. Santos, L. Guimarães, C. Santos, T. Castro, A. Santos, L. Otoni, J. Andrade

3. Detecting Basal Stem Rot (BSR) Disease at Oil Palm Tree Using Thermal Imaging Technique

Basal stem rot (BSR), caused by Ganoderma boninense is known as the most damaging disease in oil palm plantations in Southeast Asia. Ganoderma could reduce the productivity of oil palm plantations and potentially reduce the market value of palm oil in Malaysia. Early disease management of Ganoderma could prevent production losses and reduce the cost of plantation management. This study focuses on identifying the thermal properties of healthy and BSR-infected tree using a thermal imaging... S. Bejo, G. Abdol lajis, S. Abd aziz, I. Abu seman, T. Ahamed

4. Data-Driven Agricultural Machinery Activity Anomaly Detection and Classification

In modern agriculture, machinery has become the one of the necessities in providing safe, effective and economical farming operations and logistics. In a typical farming operation, different machines perform different tasks, and sometimes are used together for collaborative work. In such cases, different machines are associated with representative activity patterns, for example, in a harvest scenario, combines move through a field following regular swaths while grain carts follow irregular paths... Y. Wang, A. Balmos, J. Krogmeier, D. Buckmaster

5. Use Cases for Real Time Data in Agriculture

Agricultural data of many types (yield, weather, soil moisture, field operations, topography, etc.) comes in varied geospatial aggregation levels and time increments. For much of this data, consumption and utilization is not time sensitive. For other data elements, time is of the essence. We hypothesize that better quality data (for those later analyses) will also follow from real-time presentation and application of data for it is during the time that data is being collected that errors can be... J. Krogmeier, D. Buckmaster, A. Ault, Y. Wang, Y. Zhang, A. Layton, S. Noel, A. Balmos

6. Improving Winter Wheat Nitrogen Status Monitoring Using Proximal Canopy Sensing and Agrometeorological Information with Machine Learning

Timely and accurate diagnosis of winter wheat nitrogen (N) status plays an important role in guiding precision N management. This study aims to combine proximal canopy sensing and agrometeorological information to establish a reliable winter wheat plant N concentration (PNC) monitoring model with seven machine learning (ML) algorithms (Random Forest Regression (RFR), Support Vector Regression (SVR), K-Nearest Neighbors Regression (KNNR), Partial Least Squares Regression (PLSR), Gradient Boosting... X. Chen, Y. Miao, K. Yu, Q. Chang, F. Li

7. AI-based Pollinator Using CoreXY Robot

The declining populations of natural pollinators pose a significant ecological challenge, often attributed to the adverse effects of pesticides and intensive farming practices. To address the critical issue of pollination in the face of diminishing natural pollinators, we are pioneering an AI-based pollinator that utilizes a CoreXY pollination system. This solution aims to augment pollination efforts in agriculture, increasing yields and crop quality while mitigating the adverse impacts of pesticide... H. Kulhandjian, M. Kulhandjian, D. Rocha, B. Bennett

8. AI-based Precision Weed Detection and Elimination

Weeds are a significant challenge in agriculture, competing with crops for resources and reducing yields. Addressing this issue requires efficient and sustainable weed elimination systems. This paper presents a comprehensive overview of recent advancements in weed elimination system development, focusing on innovative technologies and methodologies. Specifically, it details the development and integration of a weed detection and elimination system based on the CoreXY architecture, implemented... H. Kulhandjian, M. Kulhandjian, D. Rocha, B. Bennett

9. AI-based Fruit Harvesting Using a Robotic Arm

Fruit harvesting stands as a pivotal and delicate process within the agricultural industry, demanding precision and efficiency to ensure both crop quality and overall productivity. Historically reliant on manual labor, this labor-intensive endeavor has taken a significant leap forward with the advent of autonomous jointed robots and Artificial Intelligence (AI). Our project aims to usher in a new era in fruit harvesting, leveraging advanced technology to perform this essential task autonomously... H. Kulhandjian, N. Amely, M. Kulhandjian

10. Data-driven Agriculture and Sustainable Farming: Friends or Foes?

Sustainability in our food and fiber agriculture systems is inherently knowledge intensive.  It is more likely to be achieved by using all the knowledge, technology, and resources available, including data-driven agricultural technology and precision agriculture methods, than by relying entirely on human powers of observation, analysis, and memory following practical experience.  Data collected by sensors and digested by artificial intelligence (AI) can help farmers learn about synergies... O. Rozenstein, Y. Cohen, V. Alchanatis , K. Behrendt, D.J. Bonfil, G. Eshel, A. Harari, W.E. Harris, I. Klapp, Y. Laor, R. Linker, T. Paz-kagan, S. Peets, M.S. Rutter, Y. Salzer, J. Lowenberg-deboer

11. OATSmobile: a Data Hub for Underground Sensor Communications and Rural IoT

Wireless Underground Sensor Networks (WUSNs) play a crucial role in precision agriculture by providing information about moisture levels, temperature, nutrient availability, and other relevant factors. However, the use of radio-frequency identification (RFID) devices for WUSNs has been relatively unexplored despite their benefits such as low power consumption. In this work, we develop a hardware platform, called OATSMobile, that enables radio-frequency identification (RFID) communications in WUSNs.... F.A. Castiblanco rubio, A. Arun, B. Lee, A. Balmos, S. Jha, J. Krogmeier, D.J. Love, D. Buckmaster

12. Avena: an Event-driven Software Framework for Informed Decisions and Actions in Cropping Systems

Interoperability is one of the enabling factors of real-time communications and data exchange between asynchronous data actors. Interoperability can be attained by introducing events to systems that extract data from consumed ground-truth event streams that utilize application-specific structures. Events are specific occurrences happening at a particular time and place. Event-data are observations of phenomena, or actions, as seen by different systems in Internet of Things (IoT) deployments, independent... F.A. Castiblanco rubio, M. Basir, A. Balmos, J. Krogmeier, D. Buckmaster

13. Use of Crop and Drought Spectral Indices to Support Harvest Decisions of Peanut Fields in Alabama

Harvest efficiency expressed in quantity and quality of peanut fields could increase if farmers are provided with tools to support harvest decisions. Peanut farmers still rely on a visual and empiric method to assess the right time of peanut maturity but this method does not account for within-field variability of crop growth and maturity. The integration of spectral vegetation indices to assess drought, soil moisture, and crop growth to predict peanut maturity can help farmers strengthen decisions... M.F. Oliveira, B.V. Ortiz, E. Hanyabui, J.B. Costa souza, A. Sanz-saez, S. Luns hatum de almeida , C. Pilcon, G. Vellidis

14. Design of an Autonomous Ag Platform Capable of Field Scale Data Collection in Support of Artificial Intelligence

The Pivot+ Array is intended to serve as an innovative, multi-user research platform dedicated to the autonomous monitoring, analysis, and manipulation of crops and inputs at the plant scale, covering extensive areas. It will effectively address many constraints that have historically limited large-scale agricultural sensor and robotic research. This achievement will be made possible by augmenting the well-established center pivot technology, known for its autonomy, with robust power infrastructure,... S. Jha, J. Krogmeier, D. Buckmaster, D.J. Love, R.H. Grant, M. Crawford, C. Brinton, C. Wang, D. Cappelleri, A. Balmos

15. Enabling Field-level Connectivity in Rural Digital Agriculture with Cloud-based LoRaWAN

The widespread adoption of next-generation digital agriculture technologies in rural areas faces a critical challenge in the form of inadequate field-level connectivity. Traditional approaches to connecting people fall short in providing cost-effective solutions for many remote agricultural locations, exacerbating the digital divide. Current cellular networks, including 5G with millimeter wave technology, are urban-centric and struggle to meet the evolving digital agricultural needs, presenting... Y. Zhang, J. Bailey, A. Balmos, F.A. Castiblanco rubio, J. Krogmeier, D. Buckmaster, D. Love, J. Zhang, M. Allen

16. Advanced Classification of Beetle Doppelgängers Using Siamese Neural Networks and Imaging Techniques

The precise identification of beetle species, especially those that have similar macrostructure and physical characteristics, is a challenging task in the field of entomology. The term "Beetle Doppelgängers" refers to species that exhibit almost indistinguishable macrostructural characteristics, which can complicate tasks in ecological studies, conservation efforts, and pest management. The core issue resides in their striking similarity, frequently confusing both experts and automated... P.R. Armstrong, L.O. Pordesimo, K. Siliveru, A.R. Gerken, R.O. Serfa juan