Proceedings
Authors
| Filter results4 paper(s) found. |
|---|
1. Using the Adapt-N Model to Inform Policies Promoting the Sustainability of US Maize ProductionMaize (Zea mays L.) production accounts for the largest share of crop land area in the U.S. It is the largest consumer of nitrogen (N) fertilizers but has low N Recovery Efficiency (NRE, the proportion of applied N taken up by the crop). This has resulted in well-documented environmental problems and social costs associated with high reactive N losses associated with maize production. There is a potential to reduce these costs through precision management, i.e., better application timing, use... S. Sela, H. Van-es, E. Mclellan, J. Melkonian, R. Marjerison , K. Constas |
2. Economic and Environmental Impacts in Sugarcane Production to Meet the Brazilian Ethanol Demands by 2030: The Role of Precision AgricultureThe agreement signed at COP-21 reaffirms the vital compromise of Brazil with sugarcane and ethanol production. To meet the established targets, the ethanol production should be 54 billion liters in 2030. From the agronomic standpoint, two alternatives are possible; increase the planted area and/or agricultural yield. The present study aimed to evaluate the economic and environmental impacts in sugarcane production meeting the established targets in São Paulo state. In this context, were... G.M. Sanches, T.F. Cardoso, M.F. Chagas, A.C. Luciano, D.G. Duft, P.S. Magalhães, H.C. Franco, A. Bonomi |
3. Potential of Apparent Soil Electrical Conductivity to Describe Soil Spatial Variability in Brazilian Sugarcane FieldsThe soil apparent electrical conductivity (ECa) has been highlighted in the literature as a tool with high potential to map the soil fertility of fields. However, sugarcane fields still lack results that show the applicability of this information to define the soil spatial variability and its fertility conditions. The objective of the present paper was to provide a comprehensive assessment of the relationship between ECa, evaluated by electromagnetic induction (EMI) sensor, and the spatial variability... G.M. Sanches, P.S. Magalhães, H.C. Franco, A.Z. Remacre |
4. Combining Remote Sensing and Machine Learning to Estimate Peanut Photosynthetic ParametersThe environmental conditions in which plants are situated lead to changes in their photosynthetic rate. This alteration can be visualized by pigments (Chlorophyll and Carotenoids), causing changes in plant reflectance. The goal of this study was to evaluate the performance of different Machine Learning (ML) algorithms in estimating fluorescence and foliar pigments in irrigated and rainfed peanut production fields. The experiment was conducted in the southeast of Georgia in the United States in... C. Rossi, S.L. Almeida, M.N. Sysskind, L.A. Moreno, A. Felipe dos santos, L. Lacerda, G. Vellidis, C. Pilcon, T. Orlando costa barboza |