Proceedings
Authors
| Filter results9 paper(s) found. |
|---|
1. Developing An Active Crop Sensor-based In-season Nitrogen Management Strategy For Rice In Northeast ChinaCrop sensor-based in-season N management strategies have been successfully developed and evaluated for winter wheat around the world, but little has been reported for rice. The objective of this study was to develop an active crop sensor-based in-season N management strategy for upland rice in Northeast... Y. Yao, Y. Miao, S. Huang, M.L. Gnyp, R. Jiang, X. Chen, G. Bareth |
2. Variability In Wheat Crop Production Based On Management Zones In Humid Pampas Region, ArgentinaCrop productivity within fields is heterogeneous and it responds to the variation in crop management patterns, and in previous, random, and natural crop management factors. The methodologies for the delimitation of management zones (MZ) within production fields differ based on their application objectives. The objectives... M. L, M. Diaz-zorita, P. Mercuri |
3. In-season Diagnosis of Rice Nitrogen Status Using an Active Canopy Sensor... Y. Yao, Y. Miao, S. Huang, M. Gnyp, R. Khosla, R. Jiang, G. Bareth |
4. Potential Improvement in Rice Nitrogen Status Monitoring Using Rapideye and Worldview-2 Satellite Remote SensingFor in-season site-specific nitrogen (N) management of rice to be successful, it is crucially important to diagnose rice N status efficiently across large area in a timely fashion. Satellite remote sensing provides a promising technology for crop growth monitoring and precision management over large areas. The FORMOSAT-2 satellite remote sensing imageries with 4 wavebands have been used to estimate rice N status. The objective of this study was to evaluate the potential of using high spatial resolution... S. Huang, Y. Miao, F. Yuan, M.L. Gnyp, Y. Yao, Q. Cao, V. Lenz-wiedemann, G. Bareth |
5. soil2data: Concept for a Mobile Field Laboratory for Nutrient AnalysisKnowledge of the small-scale nutrient status of arable land is an important basis for optimizing fertilizer use in crop production. A mobile field laboratory opens up the possibility of carrying out soil sampling and nutrient analysis directly on the field. In addition to the benefits of fast data availability and the avoidance of soil material transport to the laboratory, it provides a future foundation for advanced application options, e.g. a high sampling density, sampling of small sub-fields... V. Tsukor, C. Scholz, W. Nietfeld, T. Heinrich, T. Mosler , F. Lorenz, E. Najdenko, A. Möller, D. Mentrup, A. Ruckelshausen, S. Hinck |
6. Within Field Cotton Yield Prediction Using Temporal Satellite Imagery Combined with Deep LearningCrop yield prediction at the field scale plays a pivotal role in enhancing agricultural management, a vital component in addressing global food security challenges. Regional or county-level data, while valuable for broader agricultural planning, often lacks the precision required by farmers for effective and timely field management. The primary obstacle in utilizing satellite imagery to forecast crop yields at the field level lies in its low temporal and spatial resolutions. This study aims to... R. Karn, O. Adedeji, B.P. Ghimire, A. Abdalla, V. Sheng, G. Ritchie, W. Guo |
7. OATSmobile: a Data Hub for Underground Sensor Communications and Rural IoTWireless Underground Sensor Networks (WUSNs) play a crucial role in precision agriculture by providing information about moisture levels, temperature, nutrient availability, and other relevant factors. However, the use of radio-frequency identification (RFID) devices for WUSNs has been relatively unexplored despite their benefits such as low power consumption. In this work, we develop a hardware platform, called OATSMobile, that enables radio-frequency identification (RFID) communications in WUSNs.... F.A. Castiblanco rubio, A. Arun, B. Lee, A. Balmos, S. Jha, J. Krogmeier, D.J. Love, D. Buckmaster |
8. Crop and Water Monitoring Networks with Low-cost, Internet of Things TechnologyMaking meaningful changes in agroecosystems often requires the ability to monitor many environmental parameters to accurately identify potential areas for improvement in water quality and crop production. Increasingly, research questions are requiring larger and larger monitoring networks to draw applicable insights for both researchers and producers. However, acquiring enough sensors to address a particular research question is often cost-prohibitive, making it harder to draw meaningful conclusions... A.J. Brown, E. Deleon, E. Wardle |
9. Simulating Climate Change Impacts on Cotton Yield in the Texas High PlainsCrop yield prediction enables stakeholders to plan farming practices and marketing. Crop models can predict crop yield based on cropping system and practices, soil, and other environmental factors. These models are being used for decision support in agriculture in a variety of ways. Cultivar selection, water and nutrient input optimization, planting date selection, climate change analysis and yield prediction are some of the promising area of applications of the models in field level farm management.... B. Ghimire, R. Karn, O. Adedeji, G. Ritchie, W. Guo |