Proceedings

Find matching any: Reset
Raun, W.R
Hanks, J.E
Barrero, O
Witt, T
Add filter to result:
Authors
Roberts, D.C
Brorsen, B.W
Raun, W.R
Solie, J.B
Mullen, R.W
Phillips, S.B
Raun, W.R
Thomason, W.E
Taylor, R.K
Bennur, P
Solie, J.B
Wang, N
Weckler, P
Raun, W.R
Thomson, S.J
DeFauw, S.L
English, P.J
Hanks, J.E
Fisher, D.K
Foster, P.N
Zimba, P.V
Barrero, O
Castilla, L.A
Bari, M.A
Bakshi, A
Witt, T
Caragea, D
Jagadish, K
Felderhoff, T
Pramanik, S
Choton, J
Topics
Remote Sensing for Nitrogen Management
Remote Sensing Application / Sensor Technology
Applications of Unmanned Aerial Systems
Big Data, Data Mining and Deep Learning
Type
Oral
Year
2008
2018
2024
Home » Authors » Results

Authors

Filter results6 paper(s) found.

1. Prediction of Nitrogen Needs with Nitrogen-rich Strips and Ramped Nitrogen Strips

Both nitrogen rich strips and ramped nitrogen strips have been used to estimate topdress nitrogen needs for winter wheat based on in-season optical reflectance data. The ramped strip system places a series of small plots in each field with increasing levels of nitrogen to determine the application rate at which predicted yield response to nitrogen reaches a plateau. The nitrogen-rich strip system uses a nitrogen fertilizer optimization algorithm based on optical reflectance measures from the nitrogen-rich... D.C. Roberts, B.W. Brorsen, W.R. Raun, J.B. Solie

2. Developing Nitrogen Algorithms for Corn Production Using Optical Sensors

Remote sensing for nitrogen management in cereal crops has been an intensive research area due to environmental concerns and economic realities of today’s agronomic system. In the search for improved nitrogen rate decisions, what approach is most often taken and are those approaches justified through scientific investigation? The objective of this presentation is to educate decision makers on how these algorithms are developed and evaluate how well they work in the field on a small-plot... R.W. Mullen, S.B. Phillips, W.R. Raun, W.E. Thomason

3. Controller Performance Criteria for Sensor Based Variable Rate Application

Sensor based variable rate application of crop inputs provides unique challenges for traditional rate controllers when compared to map based applications. The controller set point is typically changing every second whereas with a map based systems the set point changes much less frequently. As applied data files for a sensor based variable rate nitrogen applicator were obtained from a wheat field in north central Oklahoma. These data were analyzed to determine the magnitude and frequency of rate... R.K. Taylor, P. Bennur, J.B. Solie, N. Wang, P. Weckler, W.R. Raun

4. Thermal Characterization and Spatial Analysis of Water Stress in Cotton (Gossypium Hirsutum L.) and Phytochemical Composition Related to Water Stress in Soybean (Glycine Max)

Studies were designed to explore spatial relationships of water and/or heat stress in cotton and soybeans and to assess factors that may influence yield potential. Investigations focused on detecting the onset of water/heat stress in row crops using thermal and multispectral imagery with ancillary physicochemical data such as soil moisture status and photosynthetic pigment concentrations. One cotton field with gradations in soil texture showed distinct patterns in thermal imagery, matching patterns... S.J. Thomson, S.L. Defauw, P.J. English, J.E. Hanks, D.K. Fisher, P.N. Foster, P.V. Zimba

5. Temporal Analysis of Correlation of NDVI with Growth and Yield Features of Rice Plants

In this paper we present a temporal correlation analysis of NDVI with with Growth and Yield Features of Rice Plants.  A half ha experimental rice field was established south-west of Ibagué, Tolima, Colombia (4°22'54.192"N, 75°09'17.222"W.  For the experimental design in the plot, four rows were established for nitrogen, three for phosphorous and three for potassium. For nitrogen, each row contained five treatments allocated randomly.  The... O. Barrero, L.A. Castilla

6. Deep Learning to Estimate Sorghum Yield with Uncrewed Aerial System Imagery

In the face of growing demand for food, feed, and fuel, plant breeders are challenged to accelerate yield potential through quick and efficient cultivar development. Plant breeders often conduct large-scale trials in multiple locations and years to address these goals. Sorghum breeding, integral to these efforts, requires early, accurate, and scalable harvestable yield predictions, traditionally possible only after harvest, which is time-consuming and laborious. This research harnesses high-throughput... M.A. Bari, A. Bakshi, T. Witt, D. Caragea, K. Jagadish, T. Felderhoff