Proceedings
Authors
| Filter results49 paper(s) found. |
|---|
1. Effect Of Sub-surface Drip Irrigation And Shade On Soil Moisture Uniformity In Residential TurfSub-surface irrigation in turf has advantages over traditional sprinkler systems. Evapotranspiration is reduced and water applied below the root zone promotes deeper root growth. Auditing such applications requires measurement of root-zone soil moisture. Data was taken in 2008 and 2009 on a private lawn in northern California that had just been rebuilt to include both sub-surface drip and overhead spray irrigation systems. A portable wave reflectometer was used to take geo-referenced soil moisture... D. Kieffer |
2. Application of Indirect Measures for Improved Nitrogen Fertilization Algorithmsblank... W.R. Raun |
3. Computer Aided Engineering Analysis and Design Optimization for Precision Manufacturing of Tillage Tool: Sweep CultivatorThe process optimization in advance tillage tool system conceptually designed and fabricated by computer aided engineering analysis techniques. The Software testing a field performance is taken in the soil bed preparation as well as in the various crop patterns. It was found most use full in obtaining high weed removal efficiency. The precision geometry, optimum energy utilization, multi-operational design, easy transport and flexible attachments are some of the features which results in achieving... G.U. Shinde, D.M. Salokhe, P.D. Badgujar, D.B. Sharma |
4. Potential of Visible and Near Infrared Spectroscopy for Prediction of Paddy Soil Physical PropertiesA fast and convenient soil analytical technique is needed for soil quality assessment and precision soil management. The main objective of this study was to evaluate the ability of Visible (Vis) and Near-infrared Reflectance Spectroscopy (NIRS) to predict paddy soil physical properties in a typical Malaysian paddy field. To assess the utility of spectroscopy for soil physical characteristics prediction, we used 118 soil samples for laboratory analysis and optical measurement in the Vis-NIR region... A. Gholizadeh, M. Saberioon, M. Mohd soom |
5. Stable Isotope N-15 as Precision Technique to Investigate Elemental Sulfur Effects on Fertilizer Nitrogen Use Efficiency of Corn Grown in Calcareous Sandy Soils... A.A. Soaud, .M. Rahman, F.H. Al darwish |
6. The Effect of Scheduling Irrigation on Yield, Concentration and Uptake of Nutrient in Zero Tilled Wheat (Triticum Aestivum L.)Abstract: The rice–wheat rotation... D. Krishna |
7. Remote Control System for Greenhouse Environment Using Mobile DevicesProtected crop production facilities such as greenhouse and plant factory have drawn interest and the area is increasing in Korea as well as in other countries in the world. Remote... S. Chung, K. Kim, H. Kim, J. Choi, Y. Zhang, S. Kang, K. han, S. Hur |
8. Remote Collection of Behavioral and Physiological Data to Detect Lame CowsAuthors of abstract: C. Kamphuis, J. Burke, J. Jago ... J. Jago, J. Burke, C. Kamphuis, B. Dela rue |
9. Two On-Farm Tests to Evaluate In-Line Sensors for Mastitis DetectionTo date, there is no independent and uniformly presented information available regarding detection performance of automated in-line mastitis detection systems. This lack of information makes it hard for farmers or... B. Dela rue, J. Jago, C. Kamphuis |
10. A Non-Destructive Method of Estimating Red Tip Disease in PineappleRed Tip disease typically reduces pineapple yields by up to 50%. At present, the causal agent of Red Tip disease is still unconfirmed. B... F. Abu kassim, G. Vadamalai, A. Mohd hanif, S.K. Balasundram |
11. Field Evaluation of Automated Estrus Detection Systems - Meeting Farmers' ExpectationAutomated systems for oestrus detection are commonly marketed as a suitable, or in some cases, a higher performing alternative to visual observation. Farmers, particularly those with larger herds relying on less experienced staff, view the perceived benefits of automated systems as both economic and physical, with expectations of improved oestrus detection efficiency with lower labour input. There is little evidence-based information available on the field performance of these systems to... B.T. Dela rue, C. Kamphuis, J.G. Jago, C.R. Burke |
12. Determination of Sensor Locations for Monitoring of Soil Water Content in GreenhouseMonitoring and control of environmental condition is highly important for optimum control of the conditions, especially in greenhouse and plant factor, and the condition... S. Chung, Y. Huh, J. Choi, D. Ryu, K. Kim, H. Kim, H. Kim |
13. Determination of Sensor Locations for Monitoring of Greenhouse Ambient EnvironmentIn protected crop production facilities such as greenhouse and plant factory, f... S. Chung, K. Kim, Y. Huh, S. Hur, S. Ha, M. Ryu, H. kim, K. han |
14. Sensor Fusion on a Wild Blueberry Harvester for Fruit Yield, Plant Height and Topographic Features Mapping to Improve Crop ProductivitySite-specific crop management can improve profitability and environmental risks of wild blueberry crop having large spatial variation in soil/plant characteristics, topographic features which may affect fruit yield. An integrated automated sensor fusion system including an ultrasonic sensor, a digital color camera, a slope sensor,... A.A. Farooque, Q.U. Zaman, D. Groulx, A.W. Schumann, T.J. Esau, Y.K. Chang |
15. Soil Organic Carbon Multivariate Predictions Based on Diffuse Spectral Reflectance: Impact of Soil MoistureSpatial predictions of soil organic carbon (OC) developed with proximal and remotely sensed diffuse reflectance spectra are complicated by field soil moisture variation. Our objective was to determine how moisture impacted spectral reflectance and Walkley-Black OC predictions. Soil reflectance from the North American Proficiency Testing... T. Mueller, C. Matocha, F. Sikora, B. Mijatovic, E. Rienzi |
16. Applying Conventional Vegetation Vigor Indices To UAS-Derived Orthomosaics: Issues And ConsiderationsIn recent years, unmanned airborne systems (UAS) have gained a lot of interest for their potential use in precision agriculture. While the imagery from near-infrared (NIR) enabled off-the-shelf cameras included in UAS can be directly used to facilitate crop scouting, the application in quantitative analyses remains cumbersome. The ultimate goal is to calculate (nitrogen) prescription maps from vegetation indices obtained from UAS imagery, but two main issues hamper this workflow: (1) the... J. Quaderer, J. Coonen, A. Lange, K. Pauly |
17. Development Of An On-The-Spot Analyzer For Measuring Soil Chemical PropertiesProximal soil sensing (PSS) is a growing area of research and development focusing on the use of sensors to obtain information on the physical, chemical and biological attributes of soil when they are placed in contact with, or at a distance of less than 2 m, from the target. These sensor systems have been used to 1) make measurements at specific locations, 2) produce a set of measurements related to soil depth profiles, or 3) monitor changes in soil properties over time. In each... V.I. Adamchuk, N. Dhawale, F. Rene-laforest |
18. Effect Of A Variable Rate Irrigation Strategy On The Variability Of Crop Production In Wine Grapes In CaliforniaPruning and irrigation are the cultural practices with the highest potential impact on yield and quality in wine grapes. In particular, irrigation start date, rates and frequency can be synchronized with crop development stages to control canopy growth and, in turn, positively influence light microclimate, berry size and fruit quality. In addition, canopy management practices can be implemented in vineyards with large canopies to ensure fruit zone microclimate... L.A. Sanchez, L.J. Klein, A. Claassen, D. Lew, M. Mendez-costabel, B. Sams, A. Morgan, N. Hinds, H.F. Hamann, N. Dokoozlian |
19. Optical Sensors To Predict Nitrogen Demand By SugarcaneThe low effectiveness of nitrogen (N) from fertilizer is a substantial concern in worldwide which has been threatening the sustainability of sugarcane production. The increment of nitrogen use efficiency (NUE) by sugarcane genotypes associated to the best practices of fertilizer management and nutritional diagnosis methods have higher potential to reduce environment impacts of nitrogen fertilization. Due to the difficult to determine N status in soil test as well as there is not... O.T. Kolln, G.M. Sanches, J. Rossi neto, S.G. Castro, E. Mariano, R. Otto, R. Inamasu, P.S. Magalhães, O.A. Braunbeck, H.C. Franco |
20. sUAVS Technology For Better Monitoring Crop Status For Winter CanolaThe small-unmanned aircraft vehicles (sUAVS) are currently gaining more popularity in agriculture with uses including identification of weeds and crop production issues, diagnosing nutrient deficiencies, detection of chemical drift, scouting for pests, identification of biotic or abiotic stresses, and prediction of biomass and yield. Research information on the use of sUAVS have been published and conducted in crops such as rice, wheat, and corn, but the development of... I.A. Ciampitti, K. Shroyer, V. Prasad, A. Sharda, M.J. Stamm, H. Wang, K. Price, D. Mangus |
21. Memory Based Learning: A New Data Mining Approach to Model and Interpret Soil Texture Diffuse Reflectance SpectraSuccessful estimation of spectrally active soil texture with Visible and Near-Infrared (VNIR, 400-1200 nm) and Short-Wave-Infrared (SWIR, 1200-2500 nm) spectroscopy depends mostly on the selection of an appropriate data mining algorithm. The aims of this paper were: to compare different data mining algorithms including Partial Least Squares Regression (PLSR), which is the most common technique in soil spectroscopy, Support Vector Machine Regression (SVMR), Boosted Regression Trees (BRT), and Memory... A. Gholizadeh, M. Saberioon, L. Borůvka |
22. Intuitive Image Analysing on Plant Data - High Throughput Plant Analysis with Lemnatec Image ProcessingFor digital plant phenotyping huge amounts of 2D images are acquired. This is known as one part of the phenotyping bottleneck. This bottleneck can be addressed by well-educated plant analysts, huge experience and an adapted analysis software. Automated tools that only cover specific parts of this analysis pipeline are provided. During the last years this could be changed by the image processing toolbox of LemnaTec GmbH. An automated and intuitive tool for the automated analysis of huge amounts... S. Paulus, T. Dornbusch, M. Jansen |
23. Towards Calibrated Vegetation Indices from UAS-derived OrthomosaicsCrop advisors and farmers increasingly use drone data as part of their decision making. However, the vast majority of UAS-based vegetation mapping services support only the calculation of a relative NDVI derived from compressed JPEG pixel values and do not include the possibility to include more complex aspects like soil correction. In our ICPA12 contribution, we demonstrated the effects and consequences of the above shortcomings. Here, we present the stepwise development of a solution to ensure... K. Pauly |
24. Integrated Approach to Site-specific Soil Fertility ManagementIn precision agriculture the lack of affordable methods for mapping relevant soil attributes is a fundamental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil fertility... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor |
25. Integrated Analysis of Multilayer Proximal Soil Sensing DataData revealing spatial soil heterogeneity can be obtained in an economically feasible manner using on-the-go proximal soil sensing (PSS) platforms. Gathered georeferenced measurements demonstrate changes related to physical and chemical soil attributes across an agricultural field. However, since many PSS measurements are affected by multiple soil properties to different degrees, it is important to assess soil heterogeneity using a multilayer approach. Thus, analysis of multiple layers of geospatial... V.I. Adamchuk, N. Dhawale, A. Biswas, S. Lauzon, P. Dutilleul |
26. Technological Improvement on Sugar Cane Yield MonitorThis paper presents the technological improvement on sugar cane yield monitor. The system designed employs load cells as an instrument for weighing billets, set up on the side conveyor of the harvester before the sugar cane billets are dropped into a field transport wagon. This data, along with the information gathered by GPS installed on the harvester, enabled the elaboration of a digital yield map using GIS. In order to improve the yield monitor a re-design of the first prototype was accomplished.... D.G. Cerri, G.R. Gray, P.S. Magalhães |
27. Using Deep Learning - Convolutional Naural Networks (CNNS) for Real-Time Fruit Detection in the TreeImage/video processing for fruit detection in the tree using hard-coded feature extraction algorithms have shown high accuracy on fruit detection during recent years. While accurate, these approaches even with high-end hardware are still computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks architecture based on single-stage detectors. Using deep-learning techniques eliminates the need for hard-code specific features for specific... K. Bresilla, L. Manfrini, A. Boini, G. Perulli, B. Morandi, L.C. Grappadelli |
28. On-the-Go Nir Spectroscopy and Thermal Imaging for Assessing and Mapping Vineyard Water Status in Precision ViticultureNew proximal sensing technologies are desirable in viticulture to assess and map vineyard spatial variability. Towards this end, high-spatial resolution information can be obtained using novel, non-invasive sensors on-the-go. In order to improve yield, grape quality and water management, the vineyard water status should be determined. The goal of this work was to assess and map vineyard water status using two different proximal sensing technologies on-the-go: near infrared (NIR) reflectance spectroscopy... J. Tardaguila, M. Diago, S. Gutierrez, J. Fernandez-novales, E.A. Moreda |
29. Site-Specific Management Zones Delineation Using Drone-Based Hyperspectral ImageryConventional techniques (e.g., intensive soil sampling) for site-specific management zones (MZ) delineation are often laborious and time-consuming. Using drones equipped with hyperspectral system can overcome some of the disadvantages of these techniques. The present work aimed to develop a drone-based hyperspectral imagery method to characterize the spatial variability of soil physical properties in order to delineate site-specific MZ. Canonical correlation analysis (CCA) was used to extract... H. Agili, K. Chokmani, A. Cambouris, I. Perron, J. Poulin |
30. Spatial Decision Support System: Controlled Tile Drainage – Calculate Your BenefitsClimate projection studies suggest that extreme heat waves and floods will become more frequent, affecting future crop yields by 20%-30%, globally. Managing vulnerability and risk begins at the farm level where best management practices can reduce the impacts associated with extreme weather events. A practice that can assist in mitigating the impact of some extreme events is controlled tile drainage (CTD). With CTD, producers use water flow control structures to manage the drainage of water from... A. Kross, G. Kaur, D. Callegari, D. Lapen, M. Sunohara, H. Mcnairn, H. Rudy, L. Van vliet |
31. Evaluation of an Artificial Neural Network Approach for Prediction of Corn and Soybean YieldThe ability to predict crop yield during the growing season is important for crop income, insurance projections and for evaluating food security. Yet, modeling crop yield is challenging because of the complexity of the relationships between crop growth and the interrelated predictor variables. Artificial neural networks (ANNs) are useful for such complex systems as they can capture non-linear relationships of data without explicitly knowing the underlying processes. In this study, an ANN-based... A. Kross, G. Kaur, E. Znoj, D. Callegari, M. Sunohara, H. Mcnairn, D. Lapen, H. Rudy, L. Van vliet |
32. Late Season Imagery for Harvest ManagementThe overall objective of this project was to preliminarily assess the use of UAV-based thermal imagery to sense harvest-related factors. Results suggested that thermal imagery can be used to detect areas of high grain moisture content late in the harvest season. Time periods closer to physiological maturity were less likely to show significant differences in thermal imagery data. Additional research is needed to determine if moisture content trends with other measurable quantities... J. Ward, G. Roberson, R. Phillips |
33. Determining the Marginal Value of Extra Precision in Precision Grazing Systems – an Ex Ante Analysis of Impacts on System Productivity, Sustainability and EconomicsThe development of precision livestock farming (PLF) technologies for application in grazing systems is rapidly evolving. PLF technologies that facilitate the spatial and temporal management of variability in landscapes, pastures and animals promise to improve the efficiency, profitability and sustainability of livestock farming. However, such technologies as a complete package do not yet exist in grazing systems and the question of impacts at the farm system level remains unresolved. Other potential... K. Behrendt, T. Takahashi, M.S. Rutter |
34. Establishment of a Canola Emergence Assessment Methodology Using Image-based Plant Count and Ground Cover AnalysisManual assessment of emergence is a time-consuming practice that must occur within a short time-frame of the emergence stage in canola (Brassica napus). Unmanned aerial vehicles (UAV) may allow for a more thorough assessment of canola emergence by covering a wider scope of the field and in a more timely manner than in-person evaluations. This research aims to calibrate the relationship between emerging plant population count and the ground cover. The field trial took place at the University... K. Krys, S. Shirtliffe, H. Duddu, T. Ha, A. Attanayake, E. Johnson, E. Andvaag, I. Stavness |
35. Strawberry Pest Detection Using Deep Learning and Automatic Imaging SystemStrawberry growers need to monitor pests to determine the options for pest management to reduce damage to yield and quality. However, manually counting strawberry pests using a hand lens is time-consuming and biased by the observer. Therefore, an automated rapid pest scouting method in the strawberry field can save time and improve counting consistency. This study utilized six cameras to take images of the strawberry leaf. Due to the relatively small size of the strawberry pest, six cameras... C. Zhou, W. Lee, A. Pourreza, J.K. Schueller, O.E. Liburd, Y. Ampatzidis, G. Zuniga-ramirez |
36. Automated Lag Phase Detection in Wine GrapesCrop yield estimation, an important managerial tool for vineyard managers, plays a crucial role in planning pre/post-harvest operations to achieve desired yield and improve efficiency of various field operations. Although various technological approaches have been developed in the past for automated yield estimation in wine grapes, challenges such as cost and complexity of the technology, need of higher technical expertise for their operation and insufficient accuracy have caused major concerns... P. Upadhyaya, M. Karkee, X. Zhang, S. Kashetri |
37. Cloud Correction of Sentinel-2 NDVI Using S2cloudless PackageOptical satellite-derived Normalized Difference Vegetation Index (NDVI) is by far the most commonly used vegetation index value for crop monitoring. However, it is quite sensitive to the cloud, and cloud shadows and significantly decreases its usability, especially in agricultural applications. Therefore, an accurate and reliable cloud correction method is mandatory for its effective application. To address this issue, we have developed an approach to correct the NDVI values of each and every... A. Saxena, M. Dash, A.P. Verma |
38. Possibilities for Improved Decision Making and Operating Efficiency Derived from the Predictability of Autonomous Farming OperationsFor the last 6 years, small autonomous agricultural vehicles have been operating on Harper Adams University’s fields in Shropshire. Starting with a single tractor on a single rectangular hectare (2.5 acres) and moving on to three tractors on 5 irregularly shaped fields covering over 30 hectares (75 acres). Multiple crops have been grown; planting, tending, and harvesting with autonomous tractors and harvesters. The fields are worked using a Controlled Traffic Farming system,... M. Gutteridge |
39. Making Irrigator Pro an Adaptive Irrigation Decision Support SystemIrrigator Pro is a public domain irrigation scheduling model developed by the USDA-ARS National Peanut Research Laboratory. The latest version of the model uses either matric potential sensors to estimate the plant’s available soil water or manual data input. In this project, a new algorithm is developed, which will provide growers and consultants with much more flexibility in how they can feed data to the model. The new version will also run with Volumetric Water Content sensors, giving... I. Gallios, G. Vellidis, C. Butts |
40. AI-based Pollinator Using CoreXY RobotThe declining populations of natural pollinators pose a significant ecological challenge, often attributed to the adverse effects of pesticides and intensive farming practices. To address the critical issue of pollination in the face of diminishing natural pollinators, we are pioneering an AI-based pollinator that utilizes a CoreXY pollination system. This solution aims to augment pollination efforts in agriculture, increasing yields and crop quality while mitigating the adverse impacts of pesticide... H. Kulhandjian, M. Kulhandjian, D. Rocha, B. Bennett |
41. AI-based Precision Weed Detection and EliminationWeeds are a significant challenge in agriculture, competing with crops for resources and reducing yields. Addressing this issue requires efficient and sustainable weed elimination systems. This paper presents a comprehensive overview of recent advancements in weed elimination system development, focusing on innovative technologies and methodologies. Specifically, it details the development and integration of a weed detection and elimination system based on the CoreXY architecture, implemented... H. Kulhandjian, M. Kulhandjian, D. Rocha, B. Bennett |
42. AI-based Fruit Harvesting Using a Robotic ArmFruit harvesting stands as a pivotal and delicate process within the agricultural industry, demanding precision and efficiency to ensure both crop quality and overall productivity. Historically reliant on manual labor, this labor-intensive endeavor has taken a significant leap forward with the advent of autonomous jointed robots and Artificial Intelligence (AI). Our project aims to usher in a new era in fruit harvesting, leveraging advanced technology to perform this essential task autonomously... H. Kulhandjian, N. Amely, M. Kulhandjian |
43. A Multi-objective Optimisation Analysis of Virtual Fencing in Precision GrazingVirtual fencing is a precision livestock farming tool consisting of invisible boundaries created via Global Navigation Satellite Systems (GNSS) and managed remotely and in real time by app-based technology. Grazing livestock are equipped with battery-powered collars capable of delivering audio or vibration cues and possibly electric shocks when approaching or crossing an invisible boundary. Virtual fencing makes precision grazing possible without the need for physical fences. This technology originated... E. Maritan, K. Behrendt, J. Lowenberg-deboer, S. Morgan, M.S. Rutter |
44. Data-driven Agriculture and Sustainable Farming: Friends or Foes?Sustainability in our food and fiber agriculture systems is inherently knowledge intensive. It is more likely to be achieved by using all the knowledge, technology, and resources available, including data-driven agricultural technology and precision agriculture methods, than by relying entirely on human powers of observation, analysis, and memory following practical experience. Data collected by sensors and digested by artificial intelligence (AI) can help farmers learn about synergies... O. Rozenstein, Y. Cohen, V. Alchanatis , K. Behrendt, D.J. Bonfil, G. Eshel, A. Harari, W.E. Harris, I. Klapp, Y. Laor, R. Linker, T. Paz-kagan, S. Peets, M.S. Rutter, Y. Salzer, J. Lowenberg-deboer |
45. Cherry Yield Forecast: Harvest Prediction for Individual Sweet Cherry TreesDigitalization continues to transform the agricultural sector as a whole and also affects specific niches like horticulture. Particularly in fruit and wine production, the focus is on the application of sensor systems and data analysis aiming at automated detection of drought stress or pests in vineyards or orchards. As part of the “For5G” project, we are developing an end-to-end methodology for the creation of digital twins of fruit trees, with a strong focus... A. Gilson, L. Meyer, A. Killer, F. Keil, O. Scholz, D. Kittemann, P. Noack, P. Pietrzyk, C. Paglia |
46. Field Mapping for Aflatoxin Assessment in Peanut Crops Using Thermal ImageryAflatoxin is a toxic carcinogenic compound produced by certain species of Aspergillus fungi, which has a significant impact on peanut production. Aflatoxin levels above a certain threshold (20 ppb in the USA and 4 ppb in Europe) make peanuts unsuitable for export, resulting in significant financial losses for farmers and traders. Unmanned Aerial Vehicles (UAVs) are becoming increasingly popular for remote sensing applications in agriculture. Leveraging this advancement, UAV-based thermal imaging... S. Shrestha, L. Lacerda, G. Vellidis, C. Pilcon, S. Maktabi, M. Sysskind |
47. Predicting Soil Cation Exchange Capacity from Satellite Imagery Using Random Forest ModelsCrop yield variability is often attributed to spatial variation in soil properties. Remote sensing offers a practical approach to capture soil surface properties over large areas, enabling the development of detailed soil maps. This study aimed to predict cation exchange capacity (CEC), a key indicator of soil quality, in the agricultural fields of the Lower Mississippi Alluvial Valley using digital soil mapping techniques. A total of 15,586 soil samples were collected from agricultural fields... I. Muller, J. Czarnecki, M. Li, B.K. Smith |
48. Machine Learning Algorithms in Detecting Long-term Effect of Climatic Factors for Alfalfa Production in KansasThe water levels of the Ogallala Aquifer are depleting so much that agricultural land returns in Kansas are expected to drop by $34.1 million by 2050. It is imperative to understand how frequent droughts and the contrasting rates of groundwater withdrawal and recharge are affected by climate shifts in Kansas. Alfalfa, the ‘Queen of Forages’, is a water demanding crop which supplies high nutritional feed for beef industry that offered Kansas producers a $500 million production value... F. Nazrul, J. Kim, S. Dey, S. Palla, D. Sihi, B. Whitaker, G. Jha |
49. Sugarcane Yield Mapping Using an On-board Volumetric SensorFew alternatives are available to the sugarcane sector for monitoring crop productivity. However, in recent years, research has been dedicated to developing methods ranging from estimation based on engine parameters to using sensors and artificial intelligence. This study aims to present a new tool for monitoring productivity applied to sugarcane cultivation, which utilizes a volumetric optical sensor, in contrast to other methods already used for this measurement, and is recently being introduced... G. Balboa, J.C. Masnello, F. De oliveira moreira, R. Canal filho, E.R. Da silva, J.P. Molin |