Proceedings

Find matching any: Reset
Applegate, D.B
Akune, V.S
Abdalla, A
Ahmad, A
Alwaseela, H
Add filter to result:
Authors
Souza, W.J
Akune, V.S
Benez, S.H
Citon, L.C
Nakazawa, P.H
Santana Neto, A.J
Souza, W.J
Benez, S.H
Nakazawa, P.H
Santana Neto, A.J
Citon, L.C
Akune, V.S
Ferreyra, R
Applegate, D.B
Berger, A.W
Berne, D.T
Craker, B.E
Daggett, D.G
Gowler, A
Bullock, R.J
Haringx, S.C
Hillyer, C
Howatt, T
Nef, B.K
Rhea, S.T
Russo, J.M
Nieman, S.T
Sanders, P
Wilson, J.A
Wilson, J.W
Tevis, J.W
Stelford, M.W
Shearouse, T.W
Schultz, E.D
Reddy, L
Ahmad, A
Aggarwal, V
Saraswat, D
El Gamal, A
Johal, G
Karn, R
Adedeji, O
Ghimire, B.P
Abdalla, A
Sheng, V
Ritchie, G
Guo, W
Adedeji, O
Guo, W
Alwaseela, H
Ghimire, B
Wieber, E
Karn, R
Topics
Decision Support Systems in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Standards & Data Stewardship
Applications of Unmanned Aerial Systems
Precision Agriculture and Global Food Security
Drainage Optimization and Variable Rate Irrigation
Type
Poster
Oral
Year
2016
2022
2024
Home » Authors » Results

Authors

Filter results6 paper(s) found.

1. Agronomic Characteristics of Green Corn and Correlations with Productivity for the Establishment of Management Zones in Vale Do Ribeira, SP, Brazil

In Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphic... W.J. Souza, V.S. Akune, S.H. Benez, L.C. Citon, P.H. Nakazawa, A.J. Santana neto

2. Spatial Variability and Correlations Between Soil Attributes and Productivity of Green Corn Crop

In Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphic... W.J. Souza, S.H. Benez, P.H. Nakazawa, A.J. Santana neto, L.C. Citon, V.S. Akune

3. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT

AgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway identified... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy

4. Deep Learning-Based Corn Disease Tracking Using RTK Geolocated UAS Imagery

Deep learning-based solutions for precision agriculture have achieved promising results in recent times. Deep learning has been used to accurately classify different disease types and disease severity estimation as an initial stage for developing robust disease management systems. However, tracking the spread of diseases, identifying disease hot spots within cornfields, and notifying farmers using deep learning and UAS imagery remains a critical research gap. Therefore, in this study, high resolution,... A. Ahmad, V. Aggarwal, D. Saraswat, A. El gamal, G. Johal

5. Within Field Cotton Yield Prediction Using Temporal Satellite Imagery Combined with Deep Learning

Crop yield prediction at the field scale plays a pivotal role in enhancing agricultural management, a vital component in addressing global food security challenges. Regional or county-level data, while valuable for broader agricultural planning, often lacks the precision required by farmers for effective and timely field management. The primary obstacle in utilizing satellite imagery to forecast crop yields at the field level lies in its low temporal and spatial resolutions. This study aims to... R. Karn, O. Adedeji, B.P. Ghimire, A. Abdalla, V. Sheng, G. Ritchie, W. Guo

6. Assessing Precision Water Management in Cotton Using Unmanned Aerial Systems and Satellite Remote Sensing

The goal of this study was to improve agricultural sustainability and water use efficiency by allocating the right amount of water at the right place and time within the field. The objectives were to assess the effect of variable rate irrigation (VRI) on cotton growth and yield and evaluate the application of satellites and Unmanned aerial systems (UAS) in capturing the spatial and temporal patterns of cotton growth response to irrigation. Irrigation treatments with six replications of three different... O. Adedeji, W. Guo, H. Alwaseela, B. Ghimire, E. Wieber, R. Karn