Proceedings
Authors
| Filter results9 paper(s) found. |
|---|
1. Exploiting The Variability In Pasture Production On New Zealand Hill Country.New Zealand has about four million hectares in medium to steep hill country pasture to which granular solid fertiliser is applied by airplane. On most New Zealand hill country properties where cultivation is not possible the only means of influencing pasture production yield is through the addition of fertilizers and paddock subdivision to control grazing and pasture growth rates. Pasture response to fertilizer varies in production zones within the farm which can be modelled... M.Q. Grafton, P.J. Mcveagh, R.R. Pullanagari, I.J. Yule |
2. Joint Structure and Colour Based Parametric Classification of Grapevine Organs from Proximal Images Through Several Critical Phenological StagesProximal colour imaging is the most time and cost-effective automated technology to acquire high-resolution data describing accurately the trellising plane of grapevine. The available textural information is meaningful enough to provide altogether the assessment of additional agronomic parameters that are still estimated either manually or with dedicated and expensive instrumentations. This paper proposes a new framework for the classification of the different organs visible in the trellising... F.Y. Abdelghafour, R. Rosu, B. Keresztes, C. Germain, J. Da costa |
3. Real-Time Fruit Detection Using Deep Neural NetworksProximal imaging using tractor-mounted cameras is a simple and cost-effective method to acquire large quantities of data in orchards and vineyards. It can be used for the monitoring of vegetation and for the management of field operations such as the guidance of smart spraying systems for instance. One of the most prolific research subjects in arboriculture is fruit detection during the growing season. Estimations of fruit-load can be used for early yield assessments and for the monitoring of... B. Keresztes, J. Da costa, D. Randriamanga, C. Germain, F. Abdelghafour |
4. Delineation of 'Management Classes' Within Non-Irrigated Maize Fields Using Readily Available Reflectance Data and Their Correspondence to Spatial Yield VariationMaize is grown predominantly for silage or gain in North Island, New Zealand. Precision agriculture allows management of spatially variable paddocks by variably applying crop inputs tailored to distinctive potential-yield limiting areas of the paddock, known as management zones. However, uptake of precision agriculture among in New Zealand maize growers is slow and limited, largely due to lack of data, technical expertise and evidence of financial benefits. Reflectance data of satellite and areal... D.C. Ekanayake, J. Owens, A. Werner, A. Holmes |
5. A Framework for Imputation of Missing Parts in UAV Orthomosaics Using Planetscope and Sentinel-2 DataIn recent years, the emergence of Unmanned Aerial Vehicles (UAV), also known as drones, with high spatial resolution, has broadened the application of remote sensing in agriculture. However, UAV images commonly have specific problems with missing areas due to drone flight restrictions. Data mining techniques for imputing missing data is an activity often demanded in several fields of science. In this context, this research used the same approach to predict missing parts on orthomosaics obtained... F.R. Pereira, A.A. Dos reis, R.G. Freitas, S.R. Oliveira, L.R. Amaral, G.K. Figueiredo, J.F. Antunes, R.A. Lamparelli, E. Moro, N.D. Pereira, P.S. Magalhães |
6. Nitrogen Status Prediction on Pasture Fields Can Be Reached Using Visible Light UAV Data Combined with Sentinel-2 ImageryPasture fields under integrated crop-livestock system usually receive low or no nitrogen fertilization rates, since the expectation is that nitrogen demand will be provided by the soybean remaining straw cropped previously. However, keeping nitrogen at suitable levels in the entire field is the key to achieving sustainability in agricultural production systems. In this sense, remote sensing technologies play an essential role in nitrogen monitoring in pastures and crops. With the launch of the... F.R. Pereira, J.P. Lima, R.G. Freitas, A.A. Dos reis, L.R. Amaral, G.K. Figueiredo, R.A. Lamparelli, J.C. Pereira, P.S. Magalhães |
7. Enhancing On-farm Rice Yields, Water Productivity, and Profitability Through Alternate Wetting and Drying Technology in Dry Zones of West AfricaIrrigated rice farming is crucial for meeting the growing rice demand and ensuring global food security. Yet, its substantial water demand poses a significant challenge in light of increasing water scarcity. Alternate wetting and drying irrigation (AWD), one of the most widely advocated water-saving technologies, was recently introduced as a prospective solution in the semi-arid zones of West Africa. However, it remains debatable whether AWD can achieve the multiple goals of saving water while... Y.J. Johnson, M. Becker, E.R. Dossou-yovo, K. Saito |
8. Integrating Collected Field Machine Vibration Data with Machine Learning for Enhanced Precision in Agricultural OperationsIn this research, we provide an innovative combination of the Agricultural Vibration Data Acquisition Platform (avDAQ) with cutting-edge machine learning methods for data collecting from agricultural machinery. The avDAQ system, which has a strong connection to a GPS sensor, provides precise spatial information to the vibration data that has been collected, providing an in-depth explanation of the locations of the vibrations. The objective is to fully utilize avDAQ's potential to extract detailed... S. Janbazialamdari, E. Brokesh |
9. Balancing Water Productivity and Nutrient Use Efficiency: Evaluation of Alternate Wetting and Severe Drying TechnologyWith emerging water scarcity and rising fertilizer prices, it is crucial to optimize future water use while maintaining yield and nutrient efficiency in irrigated rice. Alternate wetting and moderate drying has proven to be an efficient water-saving irrigation technology for the semi-arid zones of West Africa, reducing water inputs without yield penalty. Alternate wetting and severe drying (AWD30), by re-irrigating fields only when the water table reaches 30 cm below the soil surface, may further... J. Johnson, M. Becker, J.P. Kaboré, E.R. Dossou-yovo, K. Saito |