Proceedings

Find matching any: Reset
Snevajs, H
Schleicher, S
Groulx, D
Armstrong, P.R
Dongare, M.L
Dong, T
Kovács, A.J
Perez-Parmo, R
Pandey, A
Salvaggio, C
Subramoni, H
Stephens, P
Samborski, S.M
Sudduth, K.A
Dos Santos, R.S
Scudiero, E
Karimi, F
Dean, R
Dosskey, M.G
Xue, X
Sébastien, D
Oliveira, V
Schumacher, T.E
Deleon, E
Dhal, S
Scarpin, G.J
Sade, Z
Sharma, A
Sui, R
Sarwar, M
Paccioretti, P
Karnieli, A
Santos, H.P
Oukarroum, A
Ulusoy, Y
SVIERCOSKI, R
Salunga, N.G
Song, M
Dewdney, M
Sheppard, J
Dreyer, J
Schwalbert, R.A
Saraiva, A.M
Sleichter, R
Add filter to result:
Authors
Stephens, P
Mackin, S
Holmes, G
Nisa, M.U
Babar, I
Sarwar, M
Tauqir, N.A
Shahzad, M.A
Bonfil, D.J
Shapira, U
Karnieli, A
Herrmann, I
Kinast, S
Qiu, Z
Dosskey, M.G
Marine, L
Manon, M
Claire, G
Laurent, P
Mostafa, F
Zoran, C
Naima, B
Sébastien, D
Olivier, G
Lan, Y
Xue, X
Saraiva, A.M
Santos, R.T
Molin, J.P
Farooque, A.A
Zaman, Q.U
Groulx, D
Schumann, A.W
Esau, T.J
Chang, Y.K
Dosskey, M.G
Mueller, T.G
Bonfil, D.J
Herrmann, I
Pimstein, A
Karnieli, A
Shapira , U
Herrmann, I
Karnieli, A
Bonfil, D.J
Herrmann, I
Pimstein, A
Karnieli, A
Cohen, Y
Alchanatis , V
Bonfil, D.J
Samborski, S.M
Gozdowski, D
Dobers, S.E
Benavente, J.C
Cugnasca, C.E
Barros, M.F
Santos, H.P
http://icons.paqinteractive.com/16x16/ac, G
Qiu, Z
Dosskey, M.G
Frieberg, D
Unamunzaga, O
Castell, A
Besga, G
Perez-Parmo, R
Aizpurua, A
Reitsma, K.D
Schumacher, T.E
Walsh, O.S
Pandey, A
Christiaens, R
Dong, T
Shang, J
Meng, J
Liu, J
Myers, D.B
Kitchen, N.R
Sudduth, K.A
Leonard, B.J
Kim, Y
Song, M
Chung , S
Kabir, M.S
Huh, Y
Ulusoy, Y
Tümsavas, Z
Mouazen, A.M
Tekin, Y
Dongare, M.L
Jadhav, B.T
Shaligram, A.D
Sui, R
Baggard, J
Gandorfer, M
Schleicher, S
Erdle, K
Ameglio, L
Darrozes, J
Dreyer, J
Nyéki , A
Milics, G
Kovács, A.J
Neményi, M
Kulmány, I
Zsebő, S
Hughes, E.W
Pethybridge, S.J
Salvaggio, C
van Aardt, J
Kikkert, J.R
Maxwell, B.D
Bekkerman, A
Silverman, N
Payn, R
Sheppard, J
Izurieta, C
Davis, P
Hegedus, P.B
Jafari, A
Karimi, F
Werner, A
Ghoreishi, S
Kargar, S
Sheppard, J
Peerlinck, A
Maxwell, B
Charvat, K
Berzins, R
Bergheim, R
Zadrazil, F
Macura, J
Langovskis, D
Snevajs, H
Kubickova, H
Horakova, S
Charvat Jr., K
Bazzi, C.L
Silva, F.V
Gebler, L
Souza, E.G
Schenatto, K
Sobjak, R
Dos Santos, R.S
Hachisuca, A.M
Franz, F
Sharma, A
Jalem, R.S
Dash, M
El-Mejjaouy, Y
Dumont, B
Oukarroum, A
Mercatoris , B
Vermeulen , P
Peerlinck, A
Sheppard, J
Morales Luna, G.L
Hegedus, P
Maxwell, B
Beeri, O
Pelta, R
Sade, Z
Shilo, T
Dhal, S
Louis, J
O'Sullivan, N
Gumero, J
Soetan, M
Kalafatis, S
Lusher, J
Mahanta, S
SVIERCOSKI, R
Cesario Pinto, J
Thompson, L
Mueller, N
Mieno, T
Puntel, L
Paccioretti, P
Balboa, G
Balboa, G
Puntel, L
Thompson, L
Paccioretti, P
Ottley, C
Kudenov, M
Balint-Kurti, P
Dean, R
Williams, C
Vincent, G
Kudenov, M
Balint-Kurti, P
Dean, R
Williams, C.M
Scudiero, E
Nugent, C.I
Ng, C
Jones, N
Azzam, T
Salunga, N.G
Lemus, S
Carcedo, A
Antunes de Almeida, L.F
Horbe, T
Corassa, G
Pott, L.P
Ciampitti, I
Hintz, G.D
Hefley, T
Schwalbert, R.A
Prasad, V
Frederick, Q
Burks, T
Yadav, P.K
Dewdney, M
Qin, J
Kim, M
Waltz, L
Khanal, S
Katari, S
Hong, C
Anup, A
Colbert, J
Potlapally, A
Dill, T
Porter, C
Engle, J
Stewart, C
Subramoni, H
Machiraju, R
Ortez, O
Lindsey, L
Nandi, A
Brown, A.J
Deleon, E
Wardle, E
Armstrong, P.R
Pordesimo, L.O
Siliveru, K
Gerken, A.R
Serfa Juan, R.O
Sleichter, R
BHATTARAI, A
Jakhar, A
Bastos, L
Scarpin, G.J
Oliveira, V
Topics
Remote Sensing Applications in Precision Agriculture
Precision Dairy and Livestock Management
Precision Conservation and Carbon Management
Sensor Application in Managing In-season Crop Variability
Precision Aerial Application
Food Security and Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Precision Conservation
Remote Sensing Applications in Precision Agriculture
Sensor Application in Managing In-season Crop Variability
Precision Nutrient Management
Precision Carbon Management
Precision Nutrient Management
Remote Sensing Applications in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Engineering Technologies and Advances
Proximal Sensing in Precision Agriculture
Education and Outreach in Precision Agriculture
Drainage Optimization and Variable Rate Irrigation
Profitability and Success Stories in Precision Agriculture
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
On Farm Experimentation with Site-Specific Technologies
Applications of Unmanned Aerial Systems
Precision Dairy and Livestock Management
Geospatial Data
Decision Support Systems
Smart Weather for Precision Agriculture
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Education and Outreach in Precision Agriculture
On Farm Experimentation with Site-Specific Technologies
Drivers and Barriers to Adoption of Precision Ag Technologies or Digital Agriculture
Big Data, Data Mining and Deep Learning
Artificial Intelligence (AI) in Agriculture
Education of Precision Agriculture Topics and Practices
Weather and Models for Precision Agriculture
Wireless Sensor Networks and Farm Connectivity
Robotics and Automation with Row and Horticultural Crops
Precision Agriculture for Sustainability and Environmental Protection
Meeting
Type
Poster
Oral
Year
2012
2010
2014
2018
2022
2024
Home » Authors » Results

Authors

Filter results52 paper(s) found.

1. Designing Variable-width Filter Strips Using GIS And Terrain Analysis

Filter strips are a widely-used practice for reducing the load of pollutants that leave agricultural fields in overland runoff. They are typically designed to intercept uniformly-distributed runoff with a constant width strip along a field margin. Non-uniform runoff flow, however, can reduce the effectiveness of a constant-width filter strip. Non-uniform flow is created by topographic undulations and swales in fields that concentrate runoff into certain locations... M.G. Dosskey, T.G. Mueller

2. Multi, Super Or Hyper Spectral Data, The Right Way From Research Toward Application In Agriculture

Remote sensing provides opportunities for diverse applications in agriculture. One consideration of maximizing the utility of these applications, is the need to choose the most efficient spectral resolution. Picking the optimal spectral resolutions (multi, super or hyper) for a specific application is also influenced by other factors (e.g., spatial and temporal resolutions) of the utilized device. This work focuses mainly on... D.J. Bonfil, I. Herrmann, A. Pimstein, A. Karnieli

3. Weeds Detection By Ground-level Hyperspectral Imaging

Weeds are a severe pest in agriculture, causing extensive yield loss. Weed control of grass and broadleaf weeds is commonly performed by applying selective herbicides homogeneously all over the field. As presented in several studies, applying the herbicide only where needed has economical as well as environmental benefits. Combining remote sensing tools and techniques with the concept of precision agriculture has the potential to automatically... U. Shapira , I. Herrmann, A. Karnieli, D.J. Bonfil

4. Assessment Of Field Crops Leaf Area Index By The Red-edge Inflection Point Derived From Venus Bands

The red-edge region of leaves spectrum (700-800 nm) corresponds to the spectral region that connects the chlorophyll absorption in the red and the amplified reflectance caused by the leaf structure in the near infrared (NIR) parts of the spectrum. At the canopy level, the inflection point of the red-edge slope is influenced by the plant’s condition that is related to several properties, including Leaf Area Index (LAI) and plant nutritional status.... I. Herrmann, A. Pimstein, A. Karnieli, Y. Cohen, V. Alchanatis , D.J. Bonfil

5. The Use Of A Ground Based Remote Sensor For Winter Wheat Grain Yield Prediction In Northern Poland

  The aim of the research was to investigate if algorithms developed for winter wheat, cv. Trend, yield predictions, based on ground measured GNDVI, differ significantly between 2 sequent years. The research was conducted in Pomerania, northern Poland (54° 31' N 17° 18' E) on sandy loam soils. The strip-trial design was used to compare the effect of 6 N treatments: 0, 50, 100, 150, 200 and 250 kg ha-1, applied as one dose at the beginning... S.M. Samborski, D. Gozdowski, S.E. Dobers

6. Changes Of Data Sampling Procedure To Avoid Energy And Data Losses During Microclimates Monitoring With Wireless Sensor Networks

... J.C. Benavente, C.E. Cugnasca, M.F. Barros, H.P. Santos, G. Http://icons.paqinteractive.com/16x16/ac

7. A Comparison Of Alternative Methods For Prioritizing Buffer Placement In Agricultural Watersheds For Water Quality Improvement

Conservation buffers are a widely used best management practice for reducing agricultural nonpoint source pollution. Various governmental programs and community initiatives have been implemented to adopt conservation buffers for water quality improvement. Since there is substantial cost for installing conservation buffers in watersheds, cost-effectiveness would be improved by targeting buffers to locations where they would produce greater benefit and to avoid locations... Z. Qiu, M.G. Dosskey, D. Frieberg

8. Spatial And Vertical Distribution Of Soil P, K, And Mg Content In A Vineyard Of The Do Ca Rioja Using Grid And Target Sampling Methods

  Knowledge of spatial variability of soil nutrient contents is very important to design a fertilization strategy based on the needs of the vine. Matching fertilization and nutritional plant needs is very important due to the influence of nutritional status of vineyards on productive and qualitative factors. The aim of this work was to study the spatial and vertical variability of P, K and Mg in a vineyard soil by two methods: (i) the grid sampling at three depth ranges (0-30,... O. Unamunzaga, A. Castell, G. Besga, R. Perez-parmo, A. Aizpurua

9. Estimating Soil Productivity And Energy Efficiency Using Websoil Survey, Soil Productivity Index Calculator, And Biofuel Energy Systems Simulator

Soils have varying production capacities for a specific plant or sequence of plants under defined management strategies. The production capacity or “productivity” can be quantified as a mathematical function of a soils ability to sufficiently sustain plant growth... K.D. Reitsma, T.E. Schumacher

10. Exploiting the Dmc Satellite Constellation for Applications in Precision Agriculture

This paper presents the unique capabilities of the DMC constellation of optical sensors, and examples of how a number of organisations around the world are exploiting this powerful data source for applications in precision farming. The DMC consists of five satellites built in the UK by Surrey Satellite Technology Ltd, each carrying a wide swath (650km) optical sensor. It is an international programme of satellite ownership and groundstations, with joint campaigns being coordinated centrally... P. Stephens, S. Mackin, G. Holmes

11. Influence Of Phosphorus Application With Or Without Nitrogen On Oat (Avena Sativa) Grass Nutritive Value And In Situ Digestion Kinetics In Buffalo Bulls

Fodder is the mainstay of ruminant production in majority of developing countries. However, its low yield and poor quality are considered considerable constrains which impede ruminant productivity. Fodder production and its nutritive value can be enhanced by ensuring adequate supply and utilization of nutrients... M.U. Nisa, I. Babar, M. Sarwar, N.A. Tauqir, M.A. Shahzad

12. Ground Level Hyperspectral Imagery For Weeds Detection In Wheat Fields

Weeds are a severe pest in agriculture resulting in extensive yield loss. Applying precise weed control has economical as well as environmental benefits. Combining remote sensing tools and techniques with the concept of precision agriculture has the potential to automatically locate and identify weeds in order to allow precise control. The objective of the current work is to detect annual... D.J. Bonfil, U. Shapira, A. Karnieli, I. Herrmann, S. Kinast

13. Indexes for Targeting Buffer Placement to Improve Water Quality

Targeting the placement of vegetative buffers may increase their effectiveness to improve watershed water quality. Several GIS-based indexes have been developed to help planners identify relatively better locations for placing buffers. Conservation planners require consistent and clear recommendations on which index should be used in a given planning... Z. Qiu, M.G. Dosskey

14. Using Multiplex® to Manage Nitrogen Variability in Champagne Vineyard

... L. Marine, M. Manon, G. Claire, P. Laurent, F. Mostafa, C. Zoran, B. Naima, D. Sébastien, G. Olivier

15. Ultra-low Altitude and Low Spraying Technology Research in Paddy

  Aerial application has characteristics of low-volume, small droplet, and possibility of drift. To control rice planthopper, leaf roller and blast, the research aimed at screening agrichemicals and determining the feasibility of using high concentration of conventional dosage for aerial application. The results showed that... Y. Lan, X. Xue

16. Comparison of Algorithms for Delineating Management Zones

... A.M. Saraiva, R.T. Santos, J.P. Molin

17. Sensor Fusion on a Wild Blueberry Harvester for Fruit Yield, Plant Height and Topographic Features Mapping to Improve Crop Productivity

  Site-specific crop management can improve profitability and environmental risks of wild blueberry crop having large spatial variation in soil/plant characteristics, topographic features which may affect fruit yield. An integrated automated sensor fusion system including an ultrasonic sensor, a digital color camera, a slope sensor,... A.A. Farooque, Q.U. Zaman, D. Groulx, A.W. Schumann, T.J. Esau, Y.K. Chang

18. Precision Sensors For Improved Nitrogen Recommendations In Wheat

Crop sensor-based systems with developed algorithms for making mid-season fertilizer nitrogen (N) recommendations are commercially available to producers in some parts of the world. Although there is growing interest in these technologies by grain producers in Montana, use is limited by the lack of local research under Montana’s semiarid conditions. A field study was carried out at two locations in 2011, three locations in 2012, and two locations in 2013 in North West Montana:... O.S. Walsh, A. Pandey, R. Christiaens

19. An Evaluation Of HJ-CCD Broadband Vegtation Indices For Leaf Chlorophyll Content Estimation

Leaf chlorophyll content is one of the most important biochemical variables for crop physiological status assessment, crop biomass estimation and crop yield prediction in precision agriculture. Vegetation indices were considered effective for chlorophyll content estimation. Although hyperspectral reflectance is proven to be better than multispectral reflectance for leaf chlorophyll content retrieval, the scarcity of available data from satellite hyperspectral... T. Dong, J. Shang, J. Meng, J. Liu

20. Physiological Repsonses Of Corn To Variable Seeding Rates In Landscape-Scale Strip Trials

Many producers now have the capability to vary seeding rates on-the-go. Methods are needed to develop variable rate seeding approaches in corn but require an understanding of the physiological response of corn to soil-landscape and weather conditions. Interplant competition fundamentally differs at varied seeding rate and may affect corn leaf area, transpiration, plant morphology, and assimilate partitioning. Optimizing these physiological effects with optimal seeding rates in a site-specific... D.B. Myers, N.R. Kitchen, K.A. Sudduth, B.J. Leonard

21. Performance Evaluation Of Single And Multi-GNSS Receivers In Agricultural Field Conditions

Selection of appropriate receivers and utilization methods of positioning systems are important for better positioning in different applications of precision agriculture. Objective of this research was to evaluate the performance of single and multi-GNSS receivers at stationary and moving conditions in typical Korean agricultural sites such as open field, orchard area, and mountainous area A single-GNSS receiver (Model: R100; Hemisphere GNSS, Scottsdale, AZ, USA) and a multi-GNSS... Y. Kim, M. Song, S. Chung , M.S. Kabir, Y. Huh

22. Prediction Of Cation Exchange Capacity Using Visible And Near Infrared Spectroscopy

Cation exchange capacity (CEC) of the soil is a measure of the soil ability to hold positively charged ions and is an important indicator of soil physicochemical characteristic. It is an important property for site specific management of soil nutrients in precision agriculture. The conventional analytical methods used for the determination of CEC are expensive, difficult and time consuming, because different cations must be extracted and determined. Visible and near infrared (vis-NIR) spectroscopy... Y. Ulusoy, Z. Tümsavas, A.M. Mouazen, Y. Tekin

23. Refractive Index Based Brix Measurement System for Sugar and Allied Industries

An attempt has been made to design optimization of Refractormetric based method for the measurement of Brix.  Optimization of various constructional parameters including selection and location of source, prism and detector, position of source, angular position and height of source from prism plane, divergent angle of source, refractive index of prism, size of prism, the location of detector to pick up the optimum reflected light, refractive index of sample, critical angle, choice of suitable... M.L. Dongare, B.T. Jadhav, A.D. Shaligram

24. Wireless Sensor System for Variable Rate Irrigation

Variable rate irrigation (VRI) systems use intelligent electronic devices to control individual sprinklers or groups of sprinklers to deliver the desired amount irrigation water at each specific location within a field according to VRI prescriptions. Currently VRI systems, including software tools for generate prescription maps, are commercially available for VRI practices. However, algorithms and models are required to determine the desired amount of water that needs to be applied based on the... R. Sui, J. Baggard

25. Barriers to Adoption of Smart Farming Technologies in Germany

The number of smart farming technologies available on the market is growing rapidly. Recent surveys show that despite extensive research efforts and media coverage, adoption of smart farming technologies is still lower than expected in Germany. Media analysis, a multi stakeholder workshop, and the Adoption and Diffusion Outcome Prediction Tool (ADOPT) (Kuehne et al. 2017) were applied to analyze the underlying adoption barriers that explain the low to moderate adoption levels of smart farming... M. Gandorfer, S. Schleicher, K. Erdle

26. Farm Soil Moisture Mapping Using Reflected GNSS SNR Data Onboard Low Level Flying Aircraft

Soil moisture/water content monitoring (spatial and temporal) is a critical component of farm management decision primarily for crop/plant growth and yield improvement, but also for optimization of practice such as tillage and field treatments. Satellite humidity probes do not deliver the relevant resolution for farming purposes. Ground moisture probes only provide punctual measurements and do not reflect the true spatial variability of soil moisture. Previous studies have demonstrated... L. Ameglio, J. Darrozes, J. Dreyer

27. Improving Yield Prediction Accuracy Using Energy Balance Trial, On-the-Go and Remote Sensing Procedure

 Our long term experience in the ~23.5 ha research field since 2001 shows that decision support requires complex databases from each management zone within that field (eg. soil physical and chemical parameters, technological, phenological and meteorological data). In the absence of PA sustainable biomass production cannot be achieved. The size of management zones will be ever smaller. Consequently, the on the go and remote sensing data collection should be preferred.  The... A. Nyéki , G. Milics, A.J. Kovács, M. Neményi, I. Kulmány, S. Zsebő

28. Snap Bean Flowering Detection from UAS Imaging Spectroscopy

Sclerotinia sclerotiorum (white mold) is a fungus that infects the flowers of snap beans and causes a reduction in the number of pods, and subsequent yields, due to premature pod abscission. Snap bean fields typically are treated with prophylactic fungicide applications to control white mold, once 10% of the plants have at least one flower. The holistic goal of this research is to develop spatially-explicit white mold risk models, based on inputs from remote sensing systems aboard unmanned... E.W. Hughes, S.J. Pethybridge, C. Salvaggio, J. Van aardt, J.R. Kikkert

29. Can Optimization Associated with On-Farm Experimentation Using Site-Specific Technologies Improve Producer Management Decisions?

Crop production input decisions have become increasingly difficult due to uncertainty in global markets, input costs, commodity prices, and price premiums. We hypothesize that if producers had better knowledge of market prices, spatial variability in crop response, and weather conditions that drive crop response to inputs, they could more cost-effectively make profit-maximizing input decisions. Understanding the drivers of variability in crop response and designing accompanying management strategies... B.D. Maxwell, A. Bekkerman, N. Silverman, R. Payn, J. Sheppard, C. Izurieta, P. Davis, P.B. Hegedus

30. Feature Extraction from Radial Descriptor Lines for Body Condition Scoring of Cows

Body condition score (BCS) is considered as one of the most important indices for managing dairy cows, which is used to evaluate fat cover and changes in body condition. Dairy farmers should be aware of their cows BCS to be able to identify the patient cows on time and manage diets when needed. In this study, we have introduced a new index which uses Radial Descriptor Lines (RDL) for BC scoring. Based on the fact that the fatter the cow the smoother the back surface, we hypothesised that the changes... A. Jafari, F. Karimi, A. Werner, S. Ghoreishi, S. Kargar

31. Using Deep Learning in Yield and Protein Prediction of Winter Wheat Based on Fertilization Prescriptions in Precision Agriculture

Precision Agriculture has been gaining interest due to the significant growth in the fields of engineering and computer science, hence leading to more sophisticated methods and tools to improve agricultural techniques. One approach to Precision Agriculture involves the application of mathematical models and machine learning to fertilization optimization and yield prediction, which is what this research focuses on. Specifically, in this work we report the results of predicting yield and protein... J. Sheppard, A. Peerlinck, B. Maxwell

32. Map Whiteboard As Collaboration Tool for Smart Farming Advisory Services

Precision agriculture, a branch of smart farming, holds great promise for modernization of European agriculture both in terms of environmental sustainability and economic outlook.  The vast data archives made available through Copernicus and related infrastructures, combined with a low entry threshold into the domain of AI-technologies has made it possible, if not outright easy, to make meaningful predictions that divides  individual agricultural fields into zones where variable rates... K. Charvat, R. Berzins, R. Bergheim, F. Zadrazil, J. Macura, D. Langovskis, H. Snevajs, H. Kubickova, S. Horakova, K. Charvat jr.

33. Fruit Fly Electronic Monitoring System

Insects are a constant threat to agriculture, especially the cultivation of various types of fruits such as apples, pears, guava, etc. In this sense, it is worth mentioning the Anastrepha genus flies (known as fruit fly), responsible for billionaire losses in the fruit growing sector around the world, due to the severity of their attack on orchards. In Brazil, this type of pests has been controlled in most product areas by spraying insecticides, which due to the need for prior knowledge regarding... C.L. Bazzi, F.V. Silva, L. Gebler, E.G. Souza, K. Schenatto, R. Sobjak, R.S. Dos santos, A.M. Hachisuca, F. Franz

34. Micro-climate Prediction System Using IoT Data and AutoML

Microclimate variables like temperature, humidity are sensitive to land surface properties and land-atmosphere connections. They can vary over short distances and even between sections of the farm. Getting the accurate microclimate around the crop canopy allows farmers to effectively manage crop growth. However, most of the weather forecast services available to farmers globally, either by the meteorological department or universities or some weather app,  provide weather forecasts for larger... A. Sharma, R.S. Jalem, M. Dash

35. Investigating the Potential of Visible and Near-infrared Spectroscopy (VNIR) for Detecting Phosphorus Status of Winter Wheat Leaves Grown in Long-term Trial

The determination of plant nutrient content is crucial for evaluating crop nutrient removal, enhancing nutrient use efficiency, and optimizing yields. Nutrient conventional monitoring involves colorimetric analyses in the laboratory; however, this approach is labor-intensive, costly, and time-consuming. The visible and near-infrared spectroscopy (VNIR) or hyperspectral non-imaging sensors have been an emerging technology that has been proved its potential for rapid detection of plant nutrient... Y. El-mejjaouy, B. Dumont, A. Oukarroum, B. Mercatoris , P. Vermeulen

36. Optimizing Nitrogen Application to Maximize Yield and Reduce Environmental Impact in Winter Wheat Production

Field-specific fertilizer rate optimization is known to be beneficial for improving farming profit, and profits can be further improved by dividing the field into smaller plots and applying site-specific rates across the field. Finding optimal rates for these plots is often based on data gathered from said plots, which is used to determine a yield response curve, telling us how much fertilizer needs to be applied to maximize yield. In related work, we use a Convolutional Neural Network, known... A. Peerlinck, J. Sheppard, G.L. Morales luna, P. Hegedus, B. Maxwell

37. Multi-sensor Imagery Fusion for Pixel-by-pixel Water Stress Mapping

Evaluating water stress in agricultural fields is fundamental in irrigation decision-making, especially mapping the in-field water stress variability as it allows real-time detection of system failures or avoiding yield loss in cases of unplanned water stress. Water stress mapping by remote sensing imagery is commonly associated with the thermal or the short-wave-infra-red (SWIR) bands. However, integration of multi-sensors imagery such as radar imagery or sensors with only visible and near-infra-red... O. Beeri, R. Pelta, Z. Sade, T. Shilo

38. An IoT-based Smart Real Time Sensing and Control of Heavy Metals to Ensure Optimal Growth of Plants in an Aquaponic Set-up

The concentration of heavy metals that needs to be maintained in aquaponic environments for habitable growth of plants has been a cause of concern for many decades now as it is not possible to eliminate them completely in a commercial set-up. Our goal is to design a cost-effective real-time smart sensing and actuation system in order to control the concentration of heavy metals in aquaponic solutions. Our solution consists of sensing the nutrient concentrations in the aquaponic solution, namely... S. Dhal, J. Louis, N. O'sullivan, J. Gumero, M. Soetan, S. Kalafatis, J. Lusher, S. Mahanta

39. Teaching Mathematics Towards Precision Agriculture Through Data Analysis and Models

Precision agriculture is used in a wide variety of field operations and agricultural practices that affect our daily lives. Many fields of agriculture are increasingly adopting equipment automation, robotics, and machine learning techniques. These all lead to recognize that data collection and exploitation is a valuable tool assisting in real-time farming and livestock decisions. Thus, the immediate need to empower students in Agriculture Sciences with mathematical tools using data analysis is... R. Sviercoski

40. Site-specific Evaluation of Sensor-based Winter Wheat Nitrogen Tools Via On-farm Research

Crop producers face the challenge of optimizing high yields and nitrogen use efficiency (NUE) in their agricultural practices. Enhancing NUE has been demonstrated by adopting digital agricultural technologies for site-specific nitrogen (N) management, such as remote-sensing based N recommendations for winter wheat. However, winter wheat fields are often uniformly fertilized, disregarding the inherent variability within the fields. Thus, an on-farm evaluation of sensor-based N tools is needed to... J. Cesario pinto, L. Thompson, N. Mueller, T. Mieno, L. Puntel, P. Paccioretti, G. Balboa

41. Barriers and Adoption of Precision Ag Tehcnologies for Nitrogen Management Nebraska

A statewide survey of Nebraska farmers shows that they determine the N rate based on soil lab recommendations (82%),  intuition, traditional rate, and own experience (67%). The adoption of dynamic site-specific models (23%), and sensor-based algorithms (11%) remains low. The survey identified the main barriers to the adoption of these N management technologies.  ... G. Balboa, L. Puntel, L. Thompson, P. Paccioretti

42. Automated Southern Leaf Blight Severity Grading of Corn Leaves in RGB Field Imagery

Plant stress phenotyping research has progressively addressed approaches for stress quantification. Deep learning techniques provide a means to develop objective and automated methods for identifying abiotic and biotic stress experienced in an uncontrolled environment by plants comparable to the traditional visual assessment conducted by an expert rater. This work demonstrates a computational pipeline capable of estimating the disease severity caused by southern corn leaf blight in images of field-grown... C. Ottley, M. Kudenov, P. Balint-kurti, R. Dean, C. Williams

43. Utilizing Hyperspectral Field Imagery for Accurate Southern Leaf Blight Severity Grading in Corn

Crop disease detection using traditional scouting and visual inspection approaches can be laborious and time-consuming. Timely detection of disease and its severity over large spatial regions is critical for minimizing significant yield losses. Hyperspectral imagery has been demonstrated as a useful tool for a broad assessment of crop health.  The use of spectral bands from hyperspectral data to predict disease severity and progression has been shown to have the capability of enhancing early... G. Vincent, M. Kudenov, P. Balint-kurti, R. Dean, C.M. Williams

44. Cultivating Future Leaders in Sustainable Agriculture: Insights from the Digital Agriculture Fellowship Program at the University of California, Riverside

Funded by USDA's National Institute of Food and Agriculture’s Sustainable Agricultural Systems Program and housed at the University of California, Riverside (UCR), the Digital Agriculture Fellowship (DAF) aims at equipping undergraduate students with the knowledge and experience necessary to meet the agricultural challenges posed by climate change and sustainability concerns. The program was established in 2020 and will be funded through 2026. Activities span over fifteen months for... E. Scudiero, C.I. Nugent, C. Ng, N. Jones, T. Azzam, N.G. Salunga, S. Lemus

45. Assessing Soybean Water Stress Patterns and ENSO Occurrence in Southern Brazil: an in Silico Approach

Water stress (WS) is one of the most important abiotic stresses worldwide, responsible for crop yield penalties and impacting food supply. The frequency and intensity of weather stresses are relevant to delimitating agricultural regions. In addition, El Nino Southern Oscillation (ENSO) has been employed to forecast the occurrence of seasonal WS. Lastly, planting date and cultivar maturity selection are key management strategies for boosting soybean (Glycine max (L.) Merr.) yield... A. Carcedo, L.F. Antunes de almeida, T. Horbe, G. Corassa, L.P. Pott, I. Ciampitti, G.D. Hintz, T. Hefley, R.A. Schwalbert, V. Prasad

46. Supervised Hyperspectral Band Selection Using Texture Features for Classification of Citrus Leaf Diseases with YOLOv8

Citrus greening disease (HLB), a disease caused by bacteria of the Candidatus Liberibacter group, is characterized by blotchy leaves and smaller fruits. Causing both premature fruit drop and eventual tree death, HLB is a novel and significant threat to the Florida citrus industry.  Citrus canker is another serious disease caused by the bacterium Xanthomonas citri subsp. citri (syn. X. axonopodis pv. citri) and causes economic losses for growers from fruit drops and blemishes. Citrus canker... Q. Frederick, T. Burks, P.K. Yadav, M. Dewdney, J. Qin, M. Kim

47. Cyberinfrastructure for Machine Learning Applications in Agriculture: Experiences, Analysis, and Vision

Advancements in machine learning algorithms and GPU computational speeds over the last decade have led to remarkable progress in the capabilities of machine learning. This progress has been so much that, in many domains, including agriculture, access to sufficiently diverse and high-quality datasets has become a limiting factor.  While many agricultural use cases appear feasible with current compute resources and machine learning algorithms, the lack of software infrastructure for collecting,... L. Waltz, S. Khanal, S. Katari, C. Hong, A. Anup, J. Colbert, A. Potlapally, T. Dill, C. Porter, J. Engle, C. Stewart, H. Subramoni, R. Machiraju, O. Ortez, L. Lindsey, A. Nandi

48. Crop and Water Monitoring Networks with Low-cost, Internet of Things Technology

Making meaningful changes in agroecosystems often requires the ability to monitor many environmental parameters to accurately identify potential areas for improvement in water quality and crop production. Increasingly, research questions are requiring larger and larger monitoring networks to draw applicable insights for both researchers and producers. However, acquiring enough sensors to address a particular research question is often cost-prohibitive, making it harder to draw meaningful conclusions... A.J. Brown, E. Deleon, E. Wardle

49. Advanced Classification of Beetle Doppelgängers Using Siamese Neural Networks and Imaging Techniques

The precise identification of beetle species, especially those that have similar macrostructure and physical characteristics, is a challenging task in the field of entomology. The term "Beetle Doppelgängers" refers to species that exhibit almost indistinguishable macrostructural characteristics, which can complicate tasks in ecological studies, conservation efforts, and pest management. The core issue resides in their striking similarity, frequently confusing both experts and automated... P.R. Armstrong, L.O. Pordesimo, K. Siliveru, A.R. Gerken, R.O. Serfa juan

50. Utilizing ArUco Markers to Define Implement Boundaries

John Deere and Blue River Technology’s autonomous tillage system combines multidisciplinary efforts and cutting-edge technology to achieve Level 5—Unsupervised Autonomy. To create this engineering marvel, countless parameters need defined to ensure safe operation of the system; some of these parameters are static, while other of these parameters are dynamic. One particular set of parameters define the tillage implement’s boundaries for the software stack to utilize, and today... R. Sleichter

51. Comparing Proximal and Remote Sensors for Variable Rate Nitrogen Management in Cotton

Sensing and variable rate technology are becoming increasingly important in precision agriculture. These technologies utilize sensors to monitor crop growth and health, enabling informed decisions such as diagnosing nitrogen (N) stress and applying variable rates of N. Sensor-based solutions allow for customized N applications based on plant needs and environmental factors. This approach has led to notable reductions in N application rates, minimized N losses by improving N use efficiency (NUE),... A. Bhattarai, A. Jakhar, L. Bastos, G.J. Scarpin

52. TEG Automation Solutions - Sponsor Presentation

... V. Oliveira