Proceedings

Find matching any: Reset
Shanahan, J
Sinha, N
Schmid, T
Sherafat, A
Add filter to result:
Authors
Nguyen, T
Slaughter, D
Townsley, B
Carriedo, L
Maloof, J
Sinha, N
Gebbers, R
Dworak, V
Mahns, B
Weltzien, C
Büchele, D
Gornushkin, I
Mailwald, M
Ostermann, M
Rühlmann, M
Schmid, T
Maiwald, M
Sumpf, B
Rühlmann, J
Bourouah, M
Scheithauer, H
Heil, K
Heggemann, T
Leenen, M
Pätzold, S
Welp, G
Chudy, T
Mizgirev, A
Wagner, P
Beitz, T
Kumke, M
Riebe, D
Kersebaum, C
Wallor, E
Ransom, C.J
Bean, M
Kitchen, N
Camberato, J
Carter, P
Ferguson, R.B
Fernandez, F.G
Franzen, D.W
Laboski, C
Nafziger, E
Sawyer, J
Shanahan, J
Ransom, C.J
Kitchen, N.R
Camberato, J.J
Carter, P.R
Ferguson, R.B
Fernandez, F.G
Franzen, D.W
Laboski, C.A
Nafziger, E.D
Shanahan, J
Sawyer, J.E
Bhandari, S
Acosta, M
Cordova Gonzalez, C
Raheja, A
Sherafat, A
Topics
Engineering Technologies and Advances
Precision Nutrient Management
Sensor Application in Managing In-season Crop Variability
In-Season Nitrogen Management
Artificial Intelligence (AI) in Agriculture
Type
Oral
Poster
Year
2016
2018
2024
Home » Authors » Results

Authors

Filter results5 paper(s) found.

1. In-field Plant Phenotyping Using Multi-view Reconstruction: an Investigation in Eggplant

Rapid methods for plant phenotyping are a growing need in agricultural research to help accelerate improvements in crop performance in order to facilitate more efficient utilization of plant genome sequences and the corresponding advancements in associated methods of genetic improvement. Manual plant phenotyping is time-consuming, laborious, frequently subjective, and often destructive. There is a need for building field-deployable systems with advanced sensors that have both high-speed and high-performance... T. Nguyen, D. Slaughter, B. Townsley, L. Carriedo, J. Maloof, N. Sinha

2. Integrated Approach to Site-specific Soil Fertility Management

In precision agriculture the lack of affordable methods for mapping relevant soil attributes is a funda­mental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil fertility... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor

3. Field-scale Nitrogen Recommendation Tools for Improving a Canopy Reflectance Sensor Algorithm

Nitrogen (N) rate recommendation tools are utilized to help producers maximize grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. This may result in excess N being lost to the environment or producers receiving decreased economic returns on yield. Canopy reflectance sensors are capable of capturing within-field variability, although the sensor algorithm recommendations may not always be as accurate... C.J. Ransom, M. Bean, N. Kitchen, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

4. Improving Corn Nitrogen Rate Recommendations Through Tool Fusion

 Improving corn (Zea maysL,) nitrogen (N) fertilizer rate recommendation tools can improve farmer’s profits and help mitigate N pollution. One way to improve N recommendation methods is to not rely on a single tool, but to employ two or more tools. Thiscould be thoughtof as “tool fusion”.The objective of this analysis was to improve N management by combining N recommendation tools used for guiding rates for an in-seasonN application. This evaluation was... C.J. Ransom, N.R. Kitchen, J.J. Camberato, P.R. Carter, R.B. Ferguson, F.G. Fernandez, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J. Shanahan, J.E. Sawyer

5. Leveraging UAV-based Hyperspectral Data and Machine Learning Techniques for the Detection of Powderly Mildew in Vineyards

This paper presents the development and validation of machine learning models for the detection of powdery mildew in vineyards. The models are trained and validated using custom datasets obtained from unmanned aerial vehicles (UAVs) equipped with a hyperspectral sensor that can collect images in visible/near-infrared (VNIR) and shortwave infrared (SWIR) wavelengths. The dataset consists of the images of vineyards with marked regions for powdery mildew, meticulously annotated using LabelImg. ... S. Bhandari, M. Acosta, C. Cordova gonzalez, A. Raheja, A. Sherafat