Proceedings
Authors
| Filter results10 paper(s) found. |
|---|
1. Path Generation Method with Steering Rate ConstraintThe practical way to generate a reference path in path tracking is to follow an adjacent swath. However, if the adjacent swath contains sharp turnings, the reference path will eventually contain sharper turn than the tractor is able to follow. This occurs especially in the corner of a field plot when the field is driven around. In the headland, the objective is to minimize the time to reach the next swath. The commonly known method to generate the shortest path between two arbitrary... J. Backman, T. Oksanen, A. Visala |
2. Optimization of Forage Harvesting By Automatic Speed Control and Additive ApplicationEfficient use of machines is especially important in forage harvesting due to the short harvesting period and expensive machinery. To achieve the best efficiency, a harvesting machine, such as a loader wagon, should be used with optimal loading. Whereas overloading the machine can cause blockages in the cut-and-feed unit, underloading consumes more time and reduces the quality of the resulting silage. In addition, the quality can be improved by optimizing the dosage of the additive. Since the... A. Suokannas, J. Backman, A. Visala, A. Kunnas |
3. Using Precision Agriculture And Remote Sensing Techniques To Improve Genotype Selection In A Breeding ProgramPrecision Agriculture (PA) and Remote Sensing (RS) technologies are increasingly being used as tools to assess crop and soil properties by breeders and physiologists. These technologies are showing potential to improve genotype selections over their traditional field measurements, by providing quick access to crop properties throughout the crop cycle and yield estimation. The objective of this work was to use vegetation indices (VIs) and soil apparent electrical conductivity... F.A. Rodrigues junior, I. Ortiz-monasterio, P.J. Zarco-tejada, K. Ammar, B.G. Gérard |
4. FOODIE Data Model for Precision AgricultureThe agriculture sector is a unique sector due to its strategic importance for both citizens (consumers) and economy (regional and global), which ideally should make the whole sector a network of interacting organizations. The FOODIE project aims at building an open and interoperable agricultural specialized platform hub on the cloud for the management of spatial and non-spatial data relevant for farming production. The FOODIE service platform deals with including their thematic, spatial, and temporal... K. Charvat, T. Reznik, K. Charvat jr., V. Lukas, S. Horakova, M. Kepka |
5. Quo Vadis Precision FarmingThe agriculture sector is a unique sector due to its strategic importance for both citizens and economy which, ideally, should make the whole sector a network of interacting organizations. There is an increasing tension, the like of which is not experienced in any other sector, between the requirements to assure full safety and keep costs under control, but also assure the long-term strategic interests of Europe and worldwide. In that sense, agricultural production influences, and is influenced... K. Charvat, T. Reznik, V. Lukas, K. Charvat jr., S. Horakova, M. Splichal, M. Kepka |
6. North American Soil Test SummaryWith the assistance and cooperation of numerous private and public soil testing laboratories, the International Plant Nutrition Institute (IPNI) periodically summarizes soil test levels in North America (NA). Soil tests indicate the relative capacity of soil to provide nutrients to plants. Therefore, this summary can be viewed as an indicator of the nutrient supplying capacity or fertility of soils in NA. This is the eleventh summary completed by IPNI or its predecessor, the Potash &... Q. Rund, S. Murrell, A. Erbe, R. Williams, E. Williams |
7. Assessing the Distribution Uniformity of Broadcast-interseeded Cover Crops at Different Crop Stages by an Unmanned Aerial VehicleDrones can now carry larger payloads and have become more affordable, making them a viable option to use for broadcast-interseeding cover crops in the fall, prior to main crop harvest. This strategy has become popular in Ohio over the past two years. However, this new strategy arose quickly with a limited understanding of field performance of the drone’s distribution uniformity under different parameters such as rates, swath widths, speeds, or cash crop type. Therefore, the objective of... A.D. Thomas, J.P. Fulton, S. Khanal, O. Ortez, G. Mcglinch |
8. Evaluating the Potential of In-season Spatial Prediction of Corn Yield and Responses to Nitrogen by Combining Crop Growth Modeling, Satellite Remote Sensing and Machine LearningNitrogen (N) is a critical yield-limiting factor for corn (Zea mays L.). However, over-application of N fertilizers is a common problem in the US Midwest, leading to many environmental problems. It is crucial to develop efficient precision N management (PNM) strategies to improve corn N management. Different PNM strategies have been developed using proximal and remote sensing, crop growth modeling and machine learning. These strategies have both advantages and disadvantages. There is... X. Zhen, Y. Miao, K. Mizuta, S. Folle, J. Lu, R.P. Negrini, G. Feng, Y. Huang |
9. A Growth Stage Centric Approach to Field Scale Corn Yield Estimation by Leveraging Machine Learning Methods from Multimodal DataField scale yield estimation is labor-intensive, typically limited to a few samples in a given field, and often happens too late to inform any in-season agronomic treatments. In this study, we used meteorological data including growing degree days (GDD), photosynthetic active radiation (PAR), and rolling average of rainfall combined with hybrid relative maturity, organic matter, and weekly growth stage information from three small-plot research locations... L. Waltz, S. Katari, S. Khanal, T. Dill, C. Porter, O. Ortez, L. Lindsey, A. Nandi |
10. Cyberinfrastructure for Machine Learning Applications in Agriculture: Experiences, Analysis, and VisionAdvancements in machine learning algorithms and GPU computational speeds over the last decade have led to remarkable progress in the capabilities of machine learning. This progress has been so much that, in many domains, including agriculture, access to sufficiently diverse and high-quality datasets has become a limiting factor. While many agricultural use cases appear feasible with current compute resources and machine learning algorithms, the lack of software infrastructure for collecting,... L. Waltz, S. Khanal, S. Katari, C. Hong, A. Anup, J. Colbert, A. Potlapally, T. Dill, C. Porter, J. Engle, C. Stewart, H. Subramoni, R. Machiraju, O. Ortez, L. Lindsey, A. Nandi |