Proceedings
Authors
| Filter results6 paper(s) found. |
|---|
1. Artificial Neural Network Techniques To Predict Orange Spotting Disease In Oil PalmLarge-Scale oil palm plantations require timely detection of disease symptoms to enable effective intervention. Orange spotting is an emerging disease that significantly reduces oil palm productivity. Remote sensing technology offers the means to detect crop biophysical properties, including crop stress, in a cost effective and non destructive manner. In this study, different portable sensors were used to measure spectral reflectance and chlorophyll... S. Liaghat, S.K. Balasundram |
2. Investigation Of Crop Varieties At Different Growth Stages Using Optical Sensor DataCotton, soybean and sorghum are economically important crops in Texas. Knowing the growing status of crops at different stages of growth is crucial to apply site-specific management and increase crop yield for farmers. Field experiments were initiated to measure cotton, soybean and sorghum plants growth status and spatial variability through the whole growing cycle. A ground-based active optical sensor, Greenseeker®, was used to collect the Normalized Difference Vegetation Index (NDVI) data... H. Zhang, Y. Lan, J. Westbrook, C. Suh, C. Hoffmann, R. Lacey |
3. Development Of A Decision Support System For Precision Areawide Pest Management In Cotton ProductionCrop models simulate growth and development, and provide relevant information for the routine management of the crop. The use of crop models on large areas for diagnosing crop growing conditions or predicting crop production is hampered by the lack of sufficient spatial information about model inputs. Integrating crop models with other information technologies such as geographic information systems (GIS), variable rate technology, remote sensing, and global positioning... Y. Lan, W.C. Hoffmann, J. Westbrook, M. Zaller |
4. Early Detection of Oil Palm Fungal Disease Infestation Using A Mid-Infrared Spectroscopy TechniqueBasal stem rot (BSR) caused by Ganoderma boninense is known as the most destructive disease of oil palm plantations in Southeast Asia. Ganoderma could potentially reduce the market share of palm oil for Malaysia. Currently Malaysia produces about 50% of the world’s supply of palm oil. Early, accurate, and non-destructive diagnosis of Ganoderma fungal infection is critical for management of this disease. Early disease management of Ganoderma could also prevent great losses in production and... S. Liaghat, S. Mansor, H. Shafri, S. Meon, R. Ehsani, S. Azam, N. Noh |
5. Assessing the Potential of an Algorithm Based On Mean Climatic Data to Predict Wheat YieldIn crop yield prediction, the unobserved future weather remains the key point of predictions. Since weather forecasts are limited in time, a large amount of information may come from the analysis of past weather data. Mean data over the past years and stochastically generated data are two possible ways to compensate the lack of future data. This research aims to demonstrate that it is possible to predict... F. Vancutsem, V. Leemans, S. Ferrandis vallterra, B. Bodson, J. Destain, M. Destain, B. Dumont |
6. Detection of Nitrogen Stress on Winter Wheat by Multispectral Machine VisionHand-held sensors (SPAD meter, N-Tester, …) used for detecting the leaves nitrogen concentration (Nc) present several drawbacks. The nitrogen concentration is gained by an indirect way through the chlorophyll concentration and the leaves have to be fixed in a defined position for the measurements. These drawbacks could be overcome by an imaging device that measures the canopy reflectance. Hence, the objective of the paper is to analyse the potential of multispectral imaging for detecting... M. Destain, V. Leemans, G. Marlier, J. Goffart, B. Bodson, B. Mercatoris, F. Gritten |