Proceedings

Find matching any: Reset
King, W
Batbayar, B
Okoruwa, V.O
Krmenec, A
Endres, G
Snevajs, H
Kayad, A.G
Weiss, U
Cohen, Y
Add filter to result:
Authors
Nigon, T.J
Rosen, C
Mulla, D
Cohen, Y
Alchanatis, V
Rud, R
Cohen, Y
Alchanatis, V
Heuer, B
Lemcoff, H
Sprintsin, M
Rosen, C
Mulla, D
Nigon, T
Dar, Z
Cohen, A
Levi, A
Brikman, R
Markovits, T
Rud, R
Pullanagari, R
Yule, I
Tuohy, M
Hedley, M
King, W
Dynes, R
Cohen, Y
Alchanatis, V
Levi, O
Cohen, S
Herrmann, I
Pimstein, A
Karnieli, A
Cohen, Y
Alchanatis , V
Bonfil, D.J
Olayide, O.E
Ikpi, A.E
Okoruwa, V.O
Alabi, T
Omodele, T
Erdenee, B
Batbayar, B
Tateishi, R
Ruckelshausen, A
Alheit, K.V
Busemeyer, L
Klose, R
Linz, A
Moeller, K
Rahe, F
Thiel, M
Trautz, D
Weiss, U
Sharma, L
Bu, H
Ashley, R
Endres, G
Teboh, J
Franzen, D.W
Alchanatis, V
Cohen, Y
Sprinstin, M
Cohen, A
Zipori, I
Dag, A
Naor, A
Rosenberg, O
Alchanatis, V
Saranga, Y
Bosak, A
Cohen, Y
Meron, M
Tsipris, J
Orlov, V
Alchnatis, V
Cohen, Y
Al-Gaadi, K
Hassaballa, A.A
Tola, E
Madugundu, R
Kayad, A.G
King, W
Dynes, R
Laurenson, S
Zydenbos, S
MacAuliffe, R
Taylor, A
Manning, M
Roberts, A
White, M
Charvat, K
Berzins, R
Bergheim, R
Zadrazil, F
Macura, J
Langovskis, D
Snevajs, H
Kubickova, H
Horakova, S
Charvat Jr., K
Stelford, M
Krmenec, A
Goldwasser, Y
Alchanati, V
Goldshtein, E
Cohen, Y
Gips, A
Nadav, I
Katz, L
Ben-Gal, A
Litaor, I
Naor, A
Peeters, A
Goldshtein, E
Alchanatis, V
Cohen, Y
Rozenstein, O
Cohen, Y
Alchanatis , V
Behrendt, K
Bonfil, D.J
Eshel, G
Harari, A
Harris, W.E
Klapp, I
Laor, Y
Linker, R
Paz-Kagan, T
Peets, S
Rutter, M.S
Salzer, Y
Lowenberg-DeBoer, J
Topics
Remote Sensing Applications in Precision Agriculture
Proximal Sensing in Precision Agriculture
Machine Vision / Multispectral & Hyperspectral Imaging Applications to Precision Agriculture
Remote Sensing Applications in Precision Agriculture
Modeling and Geo-statistics
Global Proliferation of Precision Agriculture and its Applications
Sensor Application in Managing In-season Crop Variability
Sensor Application in Managing In-season CropVariability
Remote Sensing Applications in Precision Agriculture
Remote Sensing Application / Sensor Technology
Precision Agriculture and Global Food Security
Site-Specific Pasture Management
Geospatial Data
On Farm Experimentation with Site-Specific Technologies
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Drivers and Barriers to Adoption of Precision Ag Technologies or Digital Agriculture
Type
Poster
Oral
Year
2012
2010
2014
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results19 paper(s) found.

1. Assessment Of Field Crops Leaf Area Index By The Red-edge Inflection Point Derived From Venus Bands

The red-edge region of leaves spectrum (700-800 nm) corresponds to the spectral region that connects the chlorophyll absorption in the red and the amplified reflectance caused by the leaf structure in the near infrared (NIR) parts of the spectrum. At the canopy level, the inflection point of the red-edge slope is influenced by the plant’s condition that is related to several properties, including Leaf Area Index (LAI) and plant nutritional status.... I. Herrmann, A. Pimstein, A. Karnieli, Y. Cohen, V. Alchanatis , D.J. Bonfil

2. Mapping The Effect Of Food Prices, Productivity And Poverty In The Development Domains Of Nigeria

  Poverty remains the major obstacle to economic emancipation and achievement of development agenda in Nigeria. Worse still, rising food prices pose a major threat to feeding the teeming population in Nigeria. Declining food production, high population growth, and negative food trade balance combine to worsen the food and poverty situations in Nigeria. We stand on the premise that surging and volatile food prices could have a hardest hit on those who could not afford it –... O.E. Olayide, A.E. Ikpi, V.O. Okoruwa, , T. Alabi, T. Omodele

3. Land Information System Of Precision Farming In Mongolia Using Remote Sensing And Geographical Information System

    Remote sensing (RS) and geographic information system (GIS) technologies have been of great use to planners in planning for efficient use of natural resources at national, sub region and rural levels.   RS can be used for precision farming in a number of ways for providing input supplies and variability management through decision support system.   GIS is the principal technology used to integrate spatial data... B. Erdenee, B. Batbayar, R. Tateishi

4. Sensor And System Technology For Individual Plant Crop Scouting

Sensor and system technologies are key components for automatic treatment of individual plants as well as for plant phenotyping in field trials. Based on experiences in research and application of sensors in agriculture the authors have developed phenotyping platforms for field applications including sensors, system and software development and application-specific mountings.   Sensor and data fusion have a high potential by compensating varying selectivities... A. Ruckelshausen, K.V. Alheit, L. Busemeyer, R. Klose, A. Linz, K. Moeller, F. Rahe, M. Thiel, D. Trautz, U. Weiss

5. Hyperspectral Imagery for the Detection of Nitrogen Stress in Potato for In-season Management

... T.J. Nigon, C. Rosen, D. Mulla, Y. Cohen, V. Alchanatis, R. Rud

6. Evaluating Water Status in Potato Fields Using Combined Information from RGB and Thermal Aerial Images

Potato yield and quality are highly dependent on an adequate supply of water. In this study the combined information from RGB and thermal aerial images to evaluate... Y. Cohen, V. Alchanatis, B. Heuer, H. Lemcoff, M. Sprintsin, C. Rosen, D. Mulla, T. Nigon, Z. Dar, A. Cohen, A. Levi, R. Brikman, T. Markovits, R. Rud

7. Proximal Sensing Tools to Estimate Pasture Quality Parameters.

To date systems for estimating pasture quality have relied on destructive sampling with measurement completed in a laboratory which was very time consuming and expensive. Results were often not received until after the pasture was grazed which defeated the point of the measurement, as farmers required the information to make decisions about grazing strategies to effectively... R. Pullanagari, I. Yule, M. Tuohy, M. Hedley, W. King, . Dynes

8. A Method for Combining Spatial and Hyperspectral Information for Delineation of Homogenous Management Zones

Hyperspectral (HS) remote sensing is a constantly developing field. New remote sensing applications of different fields constantly appear. The possibility of acquisition information about an object without physical contact is spanning new opportunities in many fields and for precision agricultural in particular. These opportunities demand constant improvement and development of new analysis approaches and algorithms,... Y. Cohen, V. Alchanatis, O. Levi, S. Cohen

9. Active Optical Sensor Algorithms For Corn Yield Prediction And In-Season N Application In North Dakota

A recent series of seventy seven field N rate experiments with corn (Zea mays, L.) in North Dakota was conducted. Multiple regression analysis of the characteristics of the data set indicated that segregating the data into those with high clay soils and those with medium textures increased the relationship between N rate and corn yield. However, the nearly linear positive slope relationship in high clay soils and coarser texture soils with lower yield productivity indicated... L. Sharma, H. Bu, R. Ashley, G. Endres, J. Teboh, D.W. Franzen

10. Automatic Detection And Mapping Of Irrigation System Failures Using Remotely Sensed Canopy Temperature And Image Processing

Today there is no systematic way to identify and locate failures of irrigation systems mainly because of the labor costs associated with locating the failures. The general aim of this study was to develop an airborne thermal imaging system for semi - automatic monitoring and mapping of irrigation system failures, specifically, of leaks and clogs. Initially, leaks and clogs were simulated by setting controlled trials in table grapes vineyards and olive groves. Airborne thermal... V. Alchanatis, Y. Cohen, M. Sprinstin, A. Cohen, I. Zipori, A. Dag, A. Naor

11. Are Thermal Images Adequate For Irrigation Management?

Thermal crop sensing technologies have potential as tools for monitoring and mapping crop water status, improving water use efficiency and precisely managing irrigation. As thermal sensors and imagers became more affordable, various platforms were examined to allow for canopy- and field-scale acquisitions of canopy temperature and to extract maps of water status variability. Various canopy temperature statistics and crop water stress index (CWSI) were used to estimate water status... O. Rosenberg, V. Alchanatis, Y. Saranga, A. Bosak, Y. Cohen

12. Crop Water Stress Mapping for Site Specific Irrigation by Thermal Imagery and Artificial Reference Surfaces

Variable rate irrigation machines or solid set systems have become technically feasible; however, crop water status mapping is necessary as a blueprint to match irrigation quantities to site-specific crop water demands. Remote thermal sensing can provide these maps in sufficient detail and at a timely delivery. In a set of aerial and ground scans at the Hula Valley, Israel, digital crop water stress maps were generated using geo-referenced high- resolution thermal imagery and artificial reference... M. Meron, J. Tsipris, V. Orlov, V. Alchnatis, Y. Cohen

13. Applying a Bivariate Frequency Ratio Technique for Potato High Yield Susceptibility Mapping

Spatial variation of soil characteristics and vegetation conditions are viewed as the most important indicators of crop yield status. Therefore, this study was designed to develop a crop yield prediction model through spatial autocorrelation between the actual yield of potato (Solanum tuberosum L.) crop and selected yield status indicators (soil N, EC, pH, texture and vegetation condition), where the vegetation condition was represented by the cumulative normalized difference vegetation index... K. Al-gaadi, A.A. Hassaballa, E. Tola, R. Madugundu, A.G. Kayad

14. Through the Grass Ceiling: Using Multiple Data Sources on Intra-Field Variability to Reset Expectations of Pasture Production and Farm Profitability

Intra-field variability has received much attention in arable and horticultural contexts. It has resulted in increased profitability as well as reduced environmental footprint. However, in a pastoral context, the value of understanding intra-field variability has not been widely appreciated. In this programme, we used available technologies to develop multiple data layers on multiple fields within a dairy farm. This farm was selected as it was already performing at a high level, with well-developed... W. King, R. Dynes, S. Laurenson, S. Zydenbos, R. Macauliffe, A. Taylor, M. Manning, A. Roberts, M. White

15. Map Whiteboard As Collaboration Tool for Smart Farming Advisory Services

Precision agriculture, a branch of smart farming, holds great promise for modernization of European agriculture both in terms of environmental sustainability and economic outlook.  The vast data archives made available through Copernicus and related infrastructures, combined with a low entry threshold into the domain of AI-technologies has made it possible, if not outright easy, to make meaningful predictions that divides  individual agricultural fields into zones where variable rates... K. Charvat, R. Berzins, R. Bergheim, F. Zadrazil, J. Macura, D. Langovskis, H. Snevajs, H. Kubickova, S. Horakova, K. Charvat jr.

16. Use of Precision Technologies to Conduct Successful Within-field, On-farm Trials

Performing randomized replicated trials in row crop field environments has the potential to increase crop production in environmentally sustainable ways.  Successful implementation requires an understanding of implement capabilities and sources of potential systematic error, including operator error.  Equipment capabilities can be thought of as a series of several critical “links in a chain,” each with implications that propagate downstream.   We will... M. Stelford, A. Krmenec

17. The Use of Spatial and Temporal Measures to Enhance the Sensitivity of Satellite-based Spectral Vegetation Indices to (Water) Stress in Maize Fields

Climate change and water scarcity are reducing the available irrigation water for agriculture thus turning it into a limited resource. Today calculating and estimating crop water requirements are achieved through the ETc FAO-56 model where the effect of climate on crop water requirement is determined through the water evaporation from the soil and plant (ETref), and a calendar crop coefficient (Kc). Models that... Y. Goldwasser, V. Alchanati, E. Goldshtein, Y. Cohen, A. Gips, I. Nadav

18. Comparison of Canopy Extraction Methods from UAV Thermal Images for Temperature Mapping: a Case Study from a Peach Orchard

Canopy extraction using thermal images significantly affects temperature mapping and crop water status estimation. This study aimed to compare several canopy extraction methodologies by utilizing a large database of UAV thermal images from a precision irrigation trial in a peach orchard. Canopy extraction using thermal images can be attained by purely statistical analysis (S), a combination of statistical and spatial analyses (SS), or by synchronizing thermal and RGB images, following RGB statistical... L. Katz, A. Ben-gal, I. Litaor, A. Naor, A. Peeters, E. Goldshtein, V. Alchanatis, Y. Cohen

19. Data-driven Agriculture and Sustainable Farming: Friends or Foes?

Sustainability in our food and fiber agriculture systems is inherently knowledge intensive.  It is more likely to be achieved by using all the knowledge, technology, and resources available, including data-driven agricultural technology and precision agriculture methods, than by relying entirely on human powers of observation, analysis, and memory following practical experience.  Data collected by sensors and digested by artificial intelligence (AI) can help farmers learn about synergies... O. Rozenstein, Y. Cohen, V. Alchanatis , K. Behrendt, D.J. Bonfil, G. Eshel, A. Harari, W.E. Harris, I. Klapp, Y. Laor, R. Linker, T. Paz-kagan, S. Peets, M.S. Rutter, Y. Salzer, J. Lowenberg-deboer