Proceedings

Find matching any: Reset
Möller, A
Mandal, D
Claussen, J
Cardon, G.E
Mulla, D.J
Pena-Yewtukhiw, E.M
Add filter to result:
Authors
Amakor, X
Jacobson, A.R
Cardon, G.E
Hawks, A
Barnes, W
Grove, J
Pena-Yewtukhiw, E.M
Pena-Yewtukhiw, E.M
Grove, J
Pena-Yewtukhiw, E.M
Mata-Padrino, D
Bryan, W
Claussen, J
Wörlein, N
Uhlmann, N
Gerth, S
Wang, X
Miao, Y
Batchelor, W.D
Dong, R
Mulla, D.J
Wang, X
Miao, Y
Xia, T
Dong, R
Mi, G
Mulla, D.J
Tsukor, V
Scholz, C
Nietfeld, W
Heinrich, T
Mosler , T
Lorenz, F
Najdenko, E
Möller, A
Mentrup, D
Ruckelshausen, A
Hinck, S
Mandal, D
Siqueira, R.D
Longchamps, L
Khosla, R
Siegfried, J
Khosla, R
Mandal, D
Yilma, W
Mizuta, K
Miao, Y
Morales, A.C
Lacerda, L.N
Cammarano, D
Nielsen, R.L
Gunzenhauser, R
Kuehner, K
Wakahara, S
Coulter, J.A
Mulla, D.J
Quinn, D.
McArtor, B
Mandal, D
Longchamps, L
Khosla, R
Admasu, W.A
Joshi, R
Khosla, R
Mandal, D
Unruh, R
Admasu, W.A
Unruh, R
Admasu, W.A
Mandal, D
Joshi, R
Khosla, R
Admasu, W.A
Mandal, D
Khosla, R
Admasu, W.A
Mandal, D
Khosla, R
Topics
Remote Sensing Applications in Precision Agriculture
Precision Carbon Management
Modeling and Geo-statistics
Spatial Variability in Crop, Soil and Natural Resources
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Decision Support Systems
In-Season Nitrogen Management
Site-Specific Nutrient, Lime and Seed Management
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Applications of Unmanned Aerial Systems
In-Season Nitrogen Management
Artificial Intelligence (AI) in Agriculture
In-Season Nitrogen Management
Drainage Optimization and Variable Rate Irrigation
Decision Support Systems
Digital Agriculture Solutions for Soil Health and Water Quality
Type
Poster
Oral
Year
2010
2018
2022
2024
Home » Authors » Results

Authors

Filter results16 paper(s) found.

1. Apparent Electrical Conductivity Calibration In Semiarid Soils: Ion-pair Correction

The electromagnetic induction sensor (EM38DD) is a field proven portable sensor for rapid measurement of the apparent electrical conductivity (ECa) of soils. Calibration with the electrical conductivity of saturation paste extracts is the most widely used method to correlate ECa with the effective electrical conductivity (ECe). A drawback of this method is the formation of ion pairs in the high ionic strength saturated paste extracts, which effectively decreases the measured ECe, leading to the... X. Amakor, A.R. Jacobson, G.E. Cardon, A. Hawks, W. Barnes

2. C And N Coupling Through Time: Soil C, N, And Grain Yield In A Long-term Continuous Corn Trial

Gains and losses of both C and N are important in agricultural landscapes. Temporal changes in the pattern of crop yield response to tillage and fertilizer input are commonly observed; often weakly interpreted, in long-term research. A 38-year-long monoculture corn (Zea mays L.) tillage (moldboard plow, no-tillage) by N rate (0, 84, 168, 336 kg N per hectare) trial was sampled to a depth of 100 cm, as was the surrounding... J. Grove, E.M. Pena-yewtukhiw

3. Crop Rotation Impacts ‘Temporal Sampling’ Needed For Landscape-defined Management Zones

Yield and landscape position are used to delineate management zones, but this approach is confounded by yield’s weather dependence, causing yield to evidence temporal variability/lack of yield stability. Management options (e.g. crop rotation) also influence yield stability. Our objective was to build a model that would describe the influence of crop rotation on the temporal yield stability of landscape defined management zones. Corn (Zea mays L.) yield data for two rotations,... E.M. Pena-yewtukhiw, J. Grove

4. Impact Of Winter Grazing On Forage Biomass Topography Soil Strength Spatial Relationships

Spatial relationships between soil properties, forage productivity, and landscape can be used to manage site-specific grazing. Soil penetration resistance and forage biomass were collected for three years in winter grazing experiment. The three ha experimental area was divided into six paddocks, hay was cut twice per year in the months of May and June, and forage stockpiled after the second cutting. Animals were admitted to paddocks at the end of November, at a stocking rate... E.M. Pena-yewtukhiw, D. Mata-padrino, W. Bryan

5. Quantification of Seed Performance: Non-Invasive Determination of Internal Traits Using Computed Tomography

The application of the 3D mean-shift filter to 3D Computed Tomography Data enables the segmentation of internal traits. Specifically in maize seeds this approach gives the opportunity to separate the internal structure, for example the volume of the embryo, the cavities and the low and high dense parts of the starch body. To evaluate the mean-shift filter, the results were compared to the usage of a median-smoothing filter. To show the relevance of the mean-shift extended image pipeline an automatic... J. Claussen, N. Wörlein, N. Uhlmann, S. Gerth

6. Improving the Precision of Maize Nitrogen Management Using Crop Growth Model in Northeast China

The objective of this project was to evaluate the ability of the CERES-Maize crop growth model to simulate grain yield response to plant density and N rate for two soil types in Northeast China, with the long-term goal of using the model to identify the optimum plant density and N fertilizer rate forspecific site-years. Nitrogen experiments with six N rates, three plant densities and two soil types were conducted from 2015 to 2017 in Lishu county, Jilin Province in Northeast China. The CERES-Maize... X. Wang, Y. Miao, W.D. Batchelor, R. Dong, D.J. Mulla

7. Improving Active Canopy Sensor-Based In-Season N Recommendation Using Plant Height Information for Rain-Fed Maize in Northeast China

The inefficient utilization of nitrogen (N) fertilizer due to leaching, volatilization and denitrification has resulted in environmental pollution in rain-fed maize production in Northeast China. Active canopy sensor-based in-season N application has been proven effective to meet maize N requirement in space and time. The objective of this research was to evaluate the feasibility of using active canopy sensor for guiding in in-season N fertilizer recommendation for rain-fed maize in Northeast... X. Wang, Y. Miao, T. Xia, R. Dong, G. Mi, D.J. Mulla

8. soil2data: Concept for a Mobile Field Laboratory for Nutrient Analysis

Knowledge of the small-scale nutrient status of arable land is an important basis for optimizing fertilizer use in crop production. A mobile field laboratory opens up the possibility of carrying out soil sampling and nutrient analysis directly on the field. In addition to the benefits of fast data availability and the avoidance of soil material transport to the laboratory, it provides a future foundation for advanced application options, e.g. a high sampling density, sampling of small sub-fields... V. Tsukor, C. Scholz, W. Nietfeld, T. Heinrich, T. Mosler , F. Lorenz, E. Najdenko, A. Möller, D. Mentrup, A. Ruckelshausen, S. Hinck

9. Machine Learning Techniques for Early Identification of Nitrogen Variability in Maize

Characterizing and managing nutrient variability has been the focus of precision agriculture research for decades. Previous research has indicated that in-situ fluorescence sensor measurements can be used as a proxy for nitrogen (N) status in plants in greenhouse conditions employing static sensor measurements. Indeed, practitioners of precision N management require determination of in-season plant N status in real-time at field scale to enable the most efficient N fertilizer... D. Mandal, R.D. Siqueira, L. Longchamps, R. Khosla

10. Enhancing Spatial Resolution of Maize Grain Yield Data

Grain yield data is frequently used for precision agriculture management purposes and as a parameter for evaluating agronomy experiments, but unexpected challenges sometimes interfere with harvest plans or cause total losses. The spatial detail of modern grain yield monitoring data is also limited by combine header width, which could be nearly 14 m in some crops.  Remote sensing data, such as multispectral imagery collected via satellite and unmanned aerial systems (UAS), could be used to... J. Siegfried, R. Khosla, D. Mandal, W. Yilma

11. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and Indiana

Precision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minnesota.... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor

12. Optimal Placement of Soil Moisture Sensors in an Irrigated Corn Field

Precision agricultural practices rely on characterization of spatially and temporally variable soil and crop properties to precisely synchronize inputs (water, fertilizer, etc.) to crop needs; thereby enhancing input use efficiency and farm profitability. Generally, the spatial dependency range for soil water content is shorter near the soil surface compared to deeper depths, suggesting a need for more sampling locations to accurately characterize near-surface soil water content. However, determining... D. Mandal, L. Longchamps, R. Khosla

13. Delineation of Site-Specific Management Zones using Sensor-based Data for Precision N management

Nitrogen is a critical nutrient influencing crop yield, but the common practice of uniform application of nitrogen fertilizer across a field often results in spatially variable nitrogen availability for the crop, leading to over-application in some areas and under-application in others. This imbalance can cause economic losses and significant environmental issues. Precision nitrogen application involves application of N fertilizers based on soil conditions and crop requirements. One approach for... R. Joshi, R. Khosla, D. Mandal, R. Unruh, W.A. Admasu

14. Delineating Dynamic Variable Rate Irrigation Management Zones

Agriculture irrigation strategies have traditionally been made without accounting for the natural small-scale variability in the field, leading to uniform applications that often over-irrigate parts of the field that do not need as much water. The future success of irrigated agriculture depends on advancements in the capability to account for and leverage the natural variability in croplands for optimum irrigation management both in space and time. Variable Rate Irrigation (VRI) management offers... R. Unruh, W.A. Yilma, D. Mandal, R. Joshi, R. Khosla

15. Coupling Macro-scale Variability in Soil and Micro-scale Variability in Crop Canopy for Delineation of Site-specific Management Grid

The efficient application of fertilizers via Site-Specific Management Units (SSMUs) or Management Zones (MZs) can significantly enhance crop productivity and nitrogen use efficiency. Conventional mathematical and data-driven clustering methods for MZ delineation, while prevalent, often lack precision in identifying productivity zones. This research introduces a knowledge-driven productivity zone to mitigate these limitations, offering a more precise and efficacious approach. The hypothesis... W.A. Admasu, D. Mandal, R. Khosla

16. Hyperspectral Sensing to Estimate Soil Nitrogen and Reduce Soil Sampling Intensity

Recognizing soil's critical role in agriculture, swift and accurate quantification of soil components, specifically nitrogen, becomes paramount for effective field management. Traditional laboratory methods are time-consuming, prone to errors, and require hazardous chemicals. Consequently, this research advocates the use of non-imaging hyperspectral data and VIS-NIR spectroscopy as a safer, quicker, and more efficient alternative. These methods take into account various soil components, including... W.A. Admasu, D. Mandal, R. Khosla