Proceedings

Find matching any: Reset
Pavuluri, K
Dao, T.H
Lukwesa, D
Asiabaka, C.C
Kim, H
Kaplan , G
Lee, W
Franzen, D.W
Lampinen, B
Bongiovanni, R
Kiran, A
Jafari, A
Bai, F
Wang, C
Arzani, H
Debuisson, S
Jara, L.A
Bertani, T.D
Diatta, A
Reeves, J.M
Piya, N.K
REDDY, K.A
Fraser, E
Grove, J
Add filter to result:
Authors
Lambert, D.M
Larson, J.A
English, B.C
Rejesus, R.M
Marra, M.C
Mishra, A.K
Wang, C
Watcharaanantapong, P
Roberts, R.K
Velandia, M
Chung, S
Kim, K
Kim, H
Choi, J
Zhang, Y
Kang, S
Han, K
Hur, S
Thompson, N.M
Larson, J.A
English, B.C
Lambert, D.M
Roberts, R.K
Velandia, M
Wang, C
PATIL, V.C
GOWDA, H.H
REDDY, K.A
SHANWAD, U.K
Asiabaka, C.C
Adesope, M.O
Ifeanyi- Obi, C.C
Nwakwasi, R.N
Nnadi, F
Matthews- Njoku, E.C
Chikaire, J
Chung, S
Huh, Y
Choi, J
Ryu, D
Kim, K
Kim, H
Kim, H
Acosta, L.E
Jara, L.A
Ortega, R.A
Pavuluri, K
Wade, T
Miao, Y
Cao, Q
Cui, Z
Li, F
Dao, T.H
Khosla, R
Chen, X
Debuisson, S
marine, L
Udompetaikul, V
Upadhyaya, S
Lampinen, B
Slaughter, D
Grove, J
Pena-Yewtukhiw, E.M
Velandia, M
Mooney, D.F
Roberts, R.K
English, B.C
Larson, J.A
Lambert, D.M
Larkin, S.L
Marra, M.C
Rejesus, R
Martin, S.W
Paxton, K.W
Mishra, A
Wang, C
Segarra, E
Reeves, J.M
Lee, W
Kumar, A
Ehsani, R
Yang, C
Albrigo, L.G
Pena-Yewtukhiw, E.M
Grove, J
Kim, H
Sudduth, K.A
Parajulee, M
Neupane, D
Wang, C
Carroll, S
Shrestha, R
Dao, T.H
Cho, W
Kim, D
Kang, C
Kim, H
Son, J
Chung, S
Jiang, J
Yun, H
T, S
giriyappa, M
Hanumanthappa, D
Dr., N
K, S
Yogananda, S
Kiran, A
Rozenstein, O
Haymann, N
Kaplan , G
Tanny, J
Arzani, H
Alizadeh, E
Bean, G.M
Kitchen, N.R
Camberato, J.J
Ferguson, R.B
Fernandez, F.G
Franzen, D.W
Laboski, C.A
Nafziger, E.D
Sawyer, J.E
Scharf, P.C
de Souza, M.R
Bertani, T.D
Parraga, A
Bredemeier, C
Trentin, C
Doering, D
Susin, A
Negreiros, M
KC, K
Hannah, L
Roehrdanz, P
Donatti, C
Fraser, E
Berg, A
Saenz, L
Wright, T.M
Hijmans, R.J
Mulligan, M
Duncan, E
Fraser, E
Jafari, A
Karimi, F
Werner, A
Ghoreishi, S
Kargar, S
Balboa, G
Degioanni, A
Bongiovanni, R
Melchiori, R
Cerliani, C
Scaramuzza, F
Bongiovanni, M
Gonzalez, J
Balzarini, M
Videla, H
Amin, S
Esposito, G
Rehman, T
Rahman, M
Ayipio, E
Lukwesa, D
Zheng, J
Wells, D
Syed, H.H
Piya, N.K
Sharda, A
Persch, J.R
Flippo, D
Harsha Chepally, R
Piya, N.K
Sharda, A
Flippo, D
Raitz Persch, J
Harsha Chepally, R
Piya, N.K
Gomez, F
CARCEDO, A
Diatta, A
Nagarajan, L
Prasad, V
Stewart, Z
Zingore, S
Ciampitti, I
Djighaly, P
Chamara, N
Ge, Y
Bai, F
Topics
Global Proliferation of Precision Agriculture and its Applications
Precision Horticulture
Profitability, Sustainability and Adoption
Remote Sensing Applications in Precision Agriculture
Food Security and Precision Agriculture
Precision Aerial Application
Precision Nutrient Management
Spatial Variability in Crop, Soil and Natural Resources
Sensor Application in Managing In-season Crop Variability
Precision Carbon Management
Profitability, Sustainability, and Adoption
Precision Horticulture
Modeling and Geo-statistics
Precision Nutrient Management
Spatial Variability in Crop, Soil and Natural Resources
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Site-Specific Pasture Management
In-Season Nitrogen Management
Applications of Unmanned Aerial Systems
Geospatial Data
Education and Outreach in Precision Agriculture
Precision Dairy and Livestock Management
Education and Outreach in Precision Agriculture
Artificial Intelligence (AI) in Agriculture
Precision Crop Protection
Precision Agriculture for Sustainability and Environmental Protection
Robotics and Automation with Row and Horticultural Crops
Big Data, Data Mining and Deep Learning
Type
Poster
Oral
Year
2012
2010
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results34 paper(s) found.

1. Quantifying Spatial Variability Of Indigenous Nitrogen Supply For Precision Nitrogen Management In North China Plain

... Y. Miao, Q. Cao, Z. Cui, F. Li, T.H. Dao, R. Khosla, X. Chen

2. Using Multiplex® And GreenseekerTM To Manage Spatial Variation Of Vine Vigor In Champagne

Sébastien Debuisson1, Marine Le Moigne2, Mathieu Grelier1, Sébastien Evain2, Laurent Panigai1, Zoran G. Cerovic3 1CIVC, 5 rue Henri-Martin, boîte postale 135, Epernay, France 2Force-A, Université Paris Sud, Bât 503, Orsay,... S. Debuisson, L. Marine

3. Development Of A Sensor Suite To Determine Plant Water Potential

The goal of this research was to develop a mobile sensor suite to determine plant water status in almonds and walnuts. The sensor suite consisted of an infrared thermometer to measure leaf temperature and additional sensors to measure relevant ambient conditions such as light intensity, air temperature, air humidity, and wind speed. In the Summer of 2009, the system was used to study the relationship between leaf temperature, plant water status, and relevant microclimatic information in an almond... V. Udompetaikul, S. Upadhyaya, B. Lampinen, D. Slaughter

4. C And N Coupling Through Time: Soil C, N, And Grain Yield In A Long-term Continuous Corn Trial

Gains and losses of both C and N are important in agricultural landscapes. Temporal changes in the pattern of crop yield response to tillage and fertilizer input are commonly observed; often weakly interpreted, in long-term research. A 38-year-long monoculture corn (Zea mays L.) tillage (moldboard plow, no-tillage) by N rate (0, 84, 168, 336 kg N per hectare) trial was sampled to a depth of 100 cm, as was the surrounding... J. Grove, E.M. Pena-yewtukhiw

5. Cotton Precision Farming Adoption In The Southern United States: Findings From A 2009 Survey

The objectives of this study were 1) to determine the status of precision farming technology adoption by cotton producers in 12 states and 2) to evaluate changes in cotton precision farming technology adoption between 2000 and 2008. A mail survey of cotton producers located in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, South Carolina, Tennessee, Texas and Virginia was conducted in February and March of 2009 to establish the use of precision farming technologies... M. Velandia, D.F. Mooney, R.K. Roberts, B.C. English, J.A. Larson, D.M. Lambert, S.L. Larkin, M.C. Marra, R. Rejesus, S.W. Martin, K.W. Paxton, A. Mishra, C. Wang, E. Segarra, J.M. Reeves

6. Citrus Greening Disease Detection Using Airborne Multispectral And Hyperspectral Imaging

Citrus greening disease (Huanglongbing or HLB) has become a major catastrophic disease in Florida’s $9 billion citrus industry since 2005, and continued to be spread to other parts of the U.S. There is no known cure for this disease. As of October 2009, citrus trees in 2,702 different sections (square mile) in 34 counties were infected in Florida. A set of hyperspectral imageries were used to develop disease detection algorithms using image-derived spectral library, the mixture tuned... W. Lee, A. Kumar, R. Ehsani, C. Yang, L.G. Albrigo,

7. Crop Rotation Impacts ‘Temporal Sampling’ Needed For Landscape-defined Management Zones

Yield and landscape position are used to delineate management zones, but this approach is confounded by yield’s weather dependence, causing yield to evidence temporal variability/lack of yield stability. Management options (e.g. crop rotation) also influence yield stability. Our objective was to build a model that would describe the influence of crop rotation on the temporal yield stability of landscape defined management zones. Corn (Zea mays L.) yield data for two rotations,... E.M. Pena-yewtukhiw, J. Grove

8. Laboratory Evaluation Of Ion-selective Electrodes For Simultaneous Analysis Of Macronutrients In Hydroponic Solution

... H. Kim, , , , K.A. Sudduth

9. Effect Of Nitrogen Application Rate On Soil Residual N And Cotton Yield

A long-term study was conducted on nitrogen application rate and its impact on soil residual nitrogen and cotton (FM960B2RF) lint yield under a drip irrigation production system near Plainview, Texas. The experiment was a randomized complete block design with five nitrogen application rates (0, 56, 112, 168 and 224 kg per ha) and five replications. The soil nitrogen treatment was applied as side dressing. Cotton yield, leaf N, seed N, soil residual nitrate, amount of irrigation, and rainfall data... M. Parajulee, D. Neupane, C. Wang, S. Carroll, R. Shrestha

10. Edxrfs-based Sensing Of Phosphorus And Other Mineral Macronutrient Distribution In Field Soils

Phosphorus (P) requirements for major agronomic crops have been currently based on a pre-plant mass balance method.  Fertilizer needs are estimated from crop needs, available soil P and other external nutrient inputs that include animal manure, crop residues, etc...  Thus, this approach uses field-specific... T.H. Dao

11. Factors Influencing the Timing of Precision Agriculture Technology Adoption in Southern U.S. Cotton Production

Technology innovators in cotton production adopted precision agriculture (PA) technologies soon after they became commercially available, while others adopted these technologies in later years after evaluating the success of the innovators. The timing of... D.M. Lambert, J.A. Larson, B.C. English, R.M. Rejesus, M.C. Marra, A.K. Mishra, C. Wang, P. Watcharaanantapong, R.K. Roberts, M. Velandia

12. Remote Control System for Greenhouse Environment Using Mobile Devices

Protected crop production facilities such as greenhouse and plant factory have drawn interest and the area is increasing in Korea as well as in other countries in the world. Remote... S. Chung, K. Kim, H. Kim, J. Choi, Y. Zhang, S. Kang, K. han, S. Hur

13. The Adoption of Information Technologies and Subsequent Changes in Input Use in Cotton Production

The use of precision farming has become increasingly important in cotton production. It allows farmers to take advantage of knowledge about infield variability by applying expensive inputs at levels appropriate to crop needs. Essential to the success of the precision... N.M. Thompson, J.A. Larson, B.C. English, D.M. Lambert, R.K. Roberts, M. Velandia, C. Wang

14. Soil Resource Appraisal towards Land use Planning Using Satellite Remote Sensing and GIS – A Case Study in Medak Nala Watershed in Northern Karnataka, India

In precision farming, knowledge of spatial variability in soil properties is important. The soil map shows soil series and phases like stoniness, gravelliness, salinity, sodicity,... V.C. Patil, H.H. Gowda, K.A. Reddy, U.K. Shanwad

15. Enhancing Farmers' Indigenous Knowledge Management in Cassava Varietal Trial Using Agro Ecosystem Analysis, Farmers' Drama Group and Animations in Eastern part of Nigeria.

Researchers continue to come up with new varieties but farmer perspectives and preferences are very important factors for new varieties to spread in farmers’ communities. Researcher priorities alone are not enough. A variety may be ‘scientifically perfect... C.C. Asiabaka, M.O. Adesope, C.C. Ifeanyi- obi, R.N. Nwakwasi, F. Nnadi, E.C. Matthews- njoku, J. Chikaire

16. Determination of Sensor Locations for Monitoring of Soil Water Content in Greenhouse

 Monitoring and control of environmental condition is highly important for optimum control of the conditions, especially in greenhouse and plant factor, and the condition... S. Chung, Y. Huh, J. Choi, D. Ryu, K. Kim, H. Kim, H. Kim

17. Use of Cluster Regression for Yield Prediction in Wine Grape

@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1;... L.E. Acosta, L.A. Jara, R.A. Ortega

18. Sampling Size Study for Canopy Spectral Reflectance Measurements

Reliable... K. Pavuluri, T. Wade

19. Precision Nutrient Management System Based on Ion and Crop Growth Sensing

Automated sensing and variable-rate supply of nutrients in hydroponic solutions according to the status of crop growth would allow more efficient nutrient management for crop growth in closed systems. The Structure from Motion (SfM) method has risen as a new image sensing method to obtain 3D images of plants that can be used to estimate their growth, such as leaf cover area (LCA), plant height, and fresh weight. In this sense, sensor fusion technology combining ion-selective electrodes (ISEs)... W. Cho, D. Kim, C. Kang, H. Kim, J. Son, S. Chung, J. Jiang, H. Yun

20. Spatial Variability of Soil Nutrients and Site Specific Nutrient Management in Maize

A field study was conducted during kharif 2014 and rabi 2014-15 at Southern Transition Zone of Karnataka under the jurisdiction of University of Agricultural Sciences, GKVK, Bangalore, India to know the spatial variability for available nutrient content in cultivator’s field and effect of site specific nutrient management in maize. The farmer’s fields have been delineated with each grid size of 50 m x 50 m using geospatial technology. Soil samples from 0-15 cm were... S. T, M. Giriyappa, D. Hanumanthappa, N. Dr., S. K, S. Yogananda, A. Kiran

21. Estimating Cotton Water Requirements Using Sentinel-2

Crop coefficient (Kc)-based estimation of crop water consumption is one of the most commonly used methods for irrigation management.  Spectral modeling of Kc is possible due to the high correlations between Kc and the crop phenologic development and spectral reflectance.  In this study, cotton evapotranspiration was measured in the field using several methods, including eddy covariance, surface renewal, and heat pulse.  Kc was estimated as the ratio between reference evapotranspiration... O. Rozenstein, N. Haymann, G. Kaplan , J. Tanny

22. Grazing System and Solar Fences, Innovation and Opportunity in Rangeland of Developing Countries

The future of the development and management of pasture resources depends on increasing the use of scientific innovations. In some countries rangeland livestock production majority relies on natural ecological processes of plant and animal production, despite the progress in all of the infrastructure, rangeland management have a little growth and base on traditional ranching management, grazing livestock is based on a free grazing system. In this study grazing system was applied and electric fence... H. Arzani, E. Alizadeh

23. Corn Nitrogen Fertilizer Recommendation Models Based on Soil Hydrologic Groups Aid in Predicting Economically Optimal Nitrogen Rates

Nitrogen (N) fertilizer recommendations that match corn (Zea mays L.) N needs maximize grower profits and minimize water quality consequences. However, spatial and temporal variability makes determining future N requirements difficult. Studies have shown no single soil or weather measurement is consistently increases accuracy, especially when applied over a regional scale, in predicting economically optimal N rate (EONR). Basing site N response on soil hydrological group could help account for... G.M. Bean, N.R. Kitchen, J.J. Camberato, R.B. Ferguson, F.G. Fernandez, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.E. Sawyer, P.C. Scharf

24. Wheat Biomass Estimation Using Visible Aerial Images and Artificial Neural Network

In this study, visible RGB-based vegetation indices (VIs) from UAV high spatial resolution (1.9 cm) remote sensing images were used for modeling shoot biomass of two Brazilian wheat varieties (TBIO Toruk and BRS Parrudo). The approach consists of a combination of Artificial Neural Network (ANN) with several Vegetation Indices to model the measured crop biomass at different growth stages. Several vegetation indices were implemented: NGRDI (Normalized Green-Red Difference Index), CIVE (Color Index... M.R. De souza, T.D. Bertani, A. Parraga, C. Bredemeier, C. Trentin, D. Doering, A. Susin, M. Negreiros

25. Using Geospatial Data to Assess How Climate Change May Affect Land Suitability for Agriculture Production

Finding solutions to the challenge of sustainably feeding the world’s growing population is a pressing research need that cuts across many disciplines including using geospatial data. One possible area could be developing agricultural frontiers. Frontiers are defined as land that is currently not cultivated but that may become suitable for agriculture under climate change. Climate change may drive large-scale geographic shifts in agriculture, including expansion in cultivation at the thermal... K. Kc, L. Hannah, P. Roehrdanz, C. Donatti, E. Fraser, A. Berg, L. Saenz, T.M. Wright, R.J. Hijmans, M. Mulligan

26. Data Power: Understanding the Impacts of Precision Agriculture on Social Relations

Precision agriculture has been greatly promoted for the potential of these technologies to sustainably intensify food production through increasing yields and profits, decreasing the environmental impacts of production, and improving food safety and transparency in the food system through the data collected by precision agriculture technologies.  However, little attention has been given to the potential of these technologies to impact social relations within the agricultural industry. ... E. Duncan, E. Fraser

27. Feature Extraction from Radial Descriptor Lines for Body Condition Scoring of Cows

Body condition score (BCS) is considered as one of the most important indices for managing dairy cows, which is used to evaluate fat cover and changes in body condition. Dairy farmers should be aware of their cows BCS to be able to identify the patient cows on time and manage diets when needed. In this study, we have introduced a new index which uses Radial Descriptor Lines (RDL) for BC scoring. Based on the fact that the fatter the cow the smoother the back surface, we hypothesised that the changes... A. Jafari, F. Karimi, A. Werner, S. Ghoreishi, S. Kargar

28. Overcoming Educational Barriers for Precision Agriculture Adoption: a University Diploma in Precision Agriculture in Argentina

The lack of educational programs in Precision Agriculture (PA) has been reported as one of the barriers for adoption. Our goal was to improve professional competence in PA through education in crop variability, management, and effective practices of PA in real cases. In the last 20 years different efforts has been made in Argentina to increase adoption of PA. The Universidad Nacional de Rio Cuarto (UNRC) launched in 2021 the first University Diploma in PA, a 9-month program to train agronomist... G. Balboa, A. Degioanni, R. Bongiovanni, R. Melchiori, C. Cerliani, F. Scaramuzza, M. Bongiovanni, J. Gonzalez, M. Balzarini, H. Videla, S. Amin, G. Esposito

29. A High-throughput Phenotyping System Evaluating Salt Stress Tolerance in Kale Plants Cultivated in Aquaponics Environments

Monitoring plant growth in a controlled environment is crucial to make informed decisions for various management practices such as fertilization, weed control, and harvesting. Agronomic, physiological, and architectural traits in kale plants (Brassica oleracea) are important to producers, breeders, and researchers for assessing the performance of the plants under biotic and abiotic stresses.  Traditionally, architectural, and morphological traits have been used to monitor plant growth. However,... T. Rehman, M. Rahman, E. Ayipio, D. Lukwesa, J. Zheng, D. Wells, H.H. Syed

30. Design and Development of a Spraying System for Under Canopy Rover and Its Integration with Computer Vision System

Chemical spraying such as herbicides, insecticides are essential in any agricultural field for controlling pest, weed etc. and ultimately increasing yield. About one-third of agricultural yields rely on the utilization of pesticides. However, around 3 billion kilograms of pesticides are used worldwide every year and effective utilization of it is merely 1%. The precise application of these chemicals is necessary to reduce negative impacts on environment as well as human health. The application... N.K. Piya, A. Sharda, J.R. Persch, D. Flippo, R. Harsha chepally

31. System Development for Application and Testing of Spray-on Biodegradable Mulch

Plastic mulch films have long been a staple in agriculture and plays a critical part in the specialty crop production. Plastic mulch provides benefits such as conserving soil moisture, suppress weed growth and increase soil temperature. However, the widespread use of petroleum based plastic mulch films have raised concerns due to challenges associated with their removal and environmental impact. Plastic mulch has to be removed after every growing season. During the removal process, microplastic... N.K. Piya, A. Sharda, D. Flippo

32. Real Time Application of Neural Networks and Hardware Accelerated Image Processing Pipeline for Precise Autonomous Agricultural Systems

Modern agriculture is increasingly turning to automation and precision technology to optimize crop management. In this context, our research addresses the development of an autonomous pesticide spraying rover equipped with advanced technology for precision agriculture. The primary goal is to use a neural network for real-time aphid detection in Sorghum crops, enabling targeted pesticide application only to infested plants. To accomplish this, we've integrated cutting-edge technologies and... J. Raitz persch, R. Harsha chepally, N.K. Piya

33. An Open Database of Crop Yield Response to Fertilizer Application for Senegal

Food security is one of the major global challenges today.  Africa is one of the continents with the largest gaps in terms of challenges for food security. In Senegal, about 60% of the population resides in rural areas and the cropping systems are characterized as a low productivity system, low input and in reduced areas, smallholder subsistence systems. Increasing crop productivity would have a positive impact on food security in this country. One of the main factors limiting crop productivity... F. Gomez, A. Carcedo, A. Diatta, L. Nagarajan, V. Prasad, Z. Stewart, S. Zingore, I. Ciampitti, P. Djighaly

34. Estimating Real-time Soil Water Content (SWC) in Corn and Soybean Fields Using Machine Learning Models, Proximal Remote Sensing, and Weather Data

Soil Water Content (SWC) is crucial for precise irrigation management, especially in center-pivot systems. Real-time estimation of SWC is vital for scheduling irrigation to prevent overwatering or underwatering. Proper irrigation yields benefits such as improved water efficiency, enhanced crop yield and quality, minimized environmental impact, optimized labor and energy costs, and improved soil health. Various in-situ techniques, such as Time-domain reflectometry (TDR), frequency-domain... N. Chamara, Y. Ge, F. Bai