Proceedings

Find matching any: Reset
Lowenberg-DeBoer, J
Wadhai, V.M
Knezevic, S
SANZ, R
Cao, W
Simard, M
Celades, J.A
Hafferman, A
Pravia, V
Add filter to result:
Authors
Arno, J
DEL MORAL, I
Escolà, A
Company, J
MARTÍNEZ-CASASNOVAS, J.A
MASIP, J
SANZ, R
ROSELL, J.R
Longchamps, L
Panneton, B
Simard, M
Theriault, R
Roger, T
Longchamps, L
Panneton, B
Leroux, G.D
Simard, M
Theriault, R
Pravia, V
Terra, J.A
Roel
Nayse, S.P
Choudhari, D.D
Wadhai, V.M
Liu, X
Cao, Q
Tian, Y
Zhu, Y
Zhang, Z
Cao, W
Lai, C
Min, C
Chiang, R
Hafferman, A
Morgan, S
Celades, J.A
Caicedo, J.H
García, C.E
Mora, H
Erickson, B.J
Lowenberg-DeBoer, J
Ferreyra, R
Lehmann, J
Lowenberg-DeBoer, J
Miao, Y
liu, X
Tian, Y
Zhu, Y
Cao, W
Cao, Q
Chen, X
Li, Y
Zhang, J
Wang, W
Fu, Z
Cao, Q
Tian, Y
Zhu, Y
Cao, W
liu, X
Al Amin, A
Lowenberg-DeBoer, J
Franklin, K.F
Dickin, E
Monaghan, J
Behrendt, K
McFadden, J
Erickson, B
Lowenberg-DeBoer, J
Milics, G
Maritan, E
Behrendt, K
Lowenberg-DeBoer, J
Morgan, S
Rutter, M.S
Liu, Z
liu, X
Tian, Y
Zhu, Y
Cao, W
Cao, Q
Rozenstein, O
Cohen, Y
Alchanatis , V
Behrendt, K
Bonfil, D.J
Eshel, G
Harari, A
Harris, W.E
Klapp, I
Laor, Y
Linker, R
Paz-Kagan, T
Peets, S
Rutter, M.S
Salzer, Y
Lowenberg-DeBoer, J
Shi, Y
Islam, M
Steele, K
Luck, J.D
Pitla, S
Ge, Y
Jhala, A
Knezevic, S
Topics
Proximal Sensing in Precision Agriculture
Precision Weed Management
Spatial Variability in Crop, Soil and Natural Resources
Sensor Application in Managing In-season Crop Variability
Applications of Unmanned Aerial Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Profitability and Success Stories in Precision Agriculture
Factors Driving Adoption
Precision Agriculture and Global Food Security
In-Season Nitrogen Management
Profitability and Success Stories in Precision Agriculture
Drivers and Barriers to Adoption of Precision Ag Technologies or Digital Agriculture
Site-Specific Pasture Management
Big Data, Data Mining and Deep Learning
Drone Spraying
Type
Poster
Oral
Year
2012
2010
2018
2022
2024
Home » Authors » Results

Authors

Filter results18 paper(s) found.

1. Sensing The Inter-row For Real-time Weed Spot Spraying In Conventionally Tilled Corn Fields

The spatial distribution of weeds is aggregated most of the time in crop fields. Site-specific management of weeds could result in economical and environmental benefits due to herbicide... L. Longchamps, B. Panneton, M. Simard, R. Theriault, T. Roger

2. Partial Weed Scouting For Exhaustive Real-time Spot Spraying Of Herbicides In Corn

Real-time spot spraying of weeds implies the use of plant detectors ahead of a sprayer. The range of weed spatial autocorrelation perpendicularly to crop rows is often greater than the space between the corn rows. To assess the possibility of using less than one plant detector scouting each inter-row, a one hectare field was entirely sampled with ground pictures at the appropriate timing for weed spraying. Different ways of disposing the detectors ahead of the sprayer were virtually tested. Scouting... L. Longchamps, B. Panneton, G.D. Leroux, M. Simard, R. Theriault

3. Does Pasture Longevity Under Direct Grazing Affect Field-scale Sorghum Yield Spatial Variability In Crop-pasture Rotation Systems?

Crop yield spatial variability is usually related to terrain attributes and soil properties. In pasture systems, soil properties are affected by animal grazing. However, soil and terrain attributes relation with crop yield variability has not been assessed in crop-pasture rotations.... V. Pravia, J.A. Terra, Roel

4. Cognitive Radio In Precision Agriculture

 This is an attempt to design a precision agriculture (PA) model, to control the required parameters in greenhouse with wireless sensor network (WSN). This proto type model of wireless sensor and actuators network is designed as per required parameters of available crops in a greenhouse. The design of the sensor node consists of sensors, a micro-controller and a low-powered radio module. Real-time data, enable the operators to characterise the operating parameters of the greenhouse and also... S.P. Nayse, D.D. Choudhari, V.M. Wadhai

5. Mapping the Leaf Area Index In Vineyard Using a Ground-Based LIDAR Scanner

The leaf area index (LAI) is defined as the one-sided leaf area per unit ground area and is probably the most widely used index to characterize grapevine vigour. However, direct LAI measurement requires the use of destructive leaves sampling methods which are costly and time-consuming and so are other indirect methods. Faced with these techniques, vineyard leaf area can be indirectly estimated using ground-based LIDAR sensors that scan the vines and get information about the geometry and/or structure... J. Arno, I. Del moral, A. Escolà, J. Company, J.A. MartÍnez-casasnovas, J. Masip, R. Sanz, J.R. Rosell

6. Using Unmanned Aerial Vehicle and Active-Optical Sensor to Monitor Growth Indices and Nitrogen Nutrition of Winter Wheat

Using unmanned aerial vehicle (UAV) remote sensing monitoring system can rapidly and cost-effectively provide crop canopy information for growth diagnosis and precision fertilizer regulation. RapidScan CS-45 (Holland, Lincoln, NE, USA) is a portable active-optical sensor designed for timely, non-destructive obtaining plant canopy information without being affected by weather condition. UAV equipped with RapidScan, is of great significant for rapidly monitoring crop growth and nitrogen (N) status.... X. Liu, Q. Cao, Y. Tian, Y. Zhu, Z. Zhang, W. Cao

7. Precision Agriculture Research Infrastructure for Sustainable Farming

Precision agriculture is an emerging area at the intersection of engineering and agriculture, with the goal of intelligently managing crops at a microscale to maximize yield while minimizing necessary resource. Achieving these goals requires sensors and systems with predictive models to constantly monitor crop and environment status. Large datasets from various sensors are critical in developing predictive models which can optimally manage necessary resources. Initial experiments at University... C. Lai, C. Min, R. Chiang, A. Hafferman, S. Morgan

8. Toward a Precision Agricultural Implementation for Sugar Cane Plantations in Southwestern Region of Colombia, South America

The Colombian Sugar Cane Research Center, CENICAÑA, has initiated an ambitious project for the implementation of Precision Agriculture (PA) technologies in the Cauca river valley region, where one of its main objectives is to have the ability to collect large volumes of geospatial data. The main sugarcane growers in the country perform their work in the selected work area, which covers an area of ​​approximately 242,000 ha, characterized by diverse topographic and edaphic conditions.... J.A. Celades, J.H. Caicedo, C.E. García, H. Mora

9. Survey Shows Specialty and Commodity Crop Retailers Use Precision Agriculture Differently

The 2021 CropLife-Purdue Survey of precision agricultural practices by US agricultural input dealers serving the American grain and oilseed sector shows that most of them use GPS guidance and related technologies like sprayer boom control, most provide variable rate fertilizer services, and the majority say that fertilizer decisions are influenced by grower data. In contrast, dealers serving horticultural and specialty crop farms indicate comparatively modest adoption of many precision agriculture... B.J. Erickson, J. Lowenberg-deboer

10. The ISO Strategic Advisory Group for Smart Farming: a Multi-pronged Opportunity for Greater Global Interoperability

Agriculture is becoming increasingly complex and producers must secure their profitability, sustainability, and freedom to operate under a progressively more challenging set of constraints such as climate change, regulatory pressure, changes in consumer preferences, increasing cost of inputs, and commodity price volatility. We have not, however, yet reached the level of data interoperability required for a truly "smart" farming that can tackle the aforementioned problems... R. Ferreyra, J. Lehmann

11. Developing a Wheat Precision Nitrogen Management Strategy by Combining Satellite Remote Sensing Data and WheatGrow Model

Precision nitrogen (N) management (PNM) is becoming increasingly popular due to its ability to synchronize crop N demand with soil N supply spatiotemporally. The previous evidence has demonstrated that variable rate fertilization contributes to achieving high yields and high efficiencies. However, PNM at the regional level remains unclear and challenging. This study aims to develop a novel management zone (MZ)-based PNM strategy (MZ-PNM) to optimize the basal and topdressing N rates at the regional... Y. Miao, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao, X. Chen, Y. Li

12. Potential Benefits of Variable Rate Nitrogen Topdressing Strategy Coupled with Zoning Technique: a Case Study in a Town-scale Rice Production System

Integrating remote sensing (RS)-based variable rate nitrogen (N) recommendation (VRNR) algorithms and management zones (MZs) may improve the accuracy and efficiency of site-specific N management. However, its potential benefits for application in commercial rice production systems can hardly be assessed, since it requires to intervene in common agricultural practices and causes certain economic and environmental consequences. Through a machine learning approach, this study aims to comprehensively... J. Zhang, W. Wang, Z. Fu, Q. Cao, Y. Tian, Y. Zhu, W. Cao, X. Liu

13. Profitability of Regenerative Cropping with Autonomous Machines: an Ex-ante Assessment of a British Crop-livestock Farm

Farmers, agroecological innovators and research have suggested mixed cropping as a way to promote soil health. Mixing areas of different crops in the same field is another form of precision agriculture's spatial and temporal management. The simplest form of mixed cropping is strip cropping. In conventional mechanized farming use of mixed cropping practices (i.e., strip cropping, pixel cropping) is limited by labour availability, rising wage rates, and management complexity. Regenerative agriculture... A. Al amin, J. Lowenberg-deboer, K.F. Franklin, E. Dickin, J. Monaghan, K. Behrendt

14. Global Adoption of Precision Agriculture: an Update on Trends and Emerging Technologies

The adoption of precision agriculture (PA) has been mixed. Some technologies (e.g., Global Navigation Satellite System (GNSS) guidance) have been adopted rapidly worldwide wherever there is mechanized agriculture. Adoption of some of the original PA technologies introduced in the 1990s has been modest almost everywhere (e.g., variable rate fertilizer). New and more advanced technologies based on robotics, uncrewed aerial vehicles (UAVs), machine vision, co-robotic automation, and artificial intelligence... J. Mcfadden, B. Erickson, J. Lowenberg-deboer, G. Milics

15. A Multi-objective Optimisation Analysis of Virtual Fencing in Precision Grazing

Virtual fencing is a precision livestock farming tool consisting of invisible boundaries created via Global Navigation Satellite Systems (GNSS) and managed remotely and in real time by app-based technology. Grazing livestock are equipped with battery-powered collars capable of delivering audio or vibration cues and possibly electric shocks when approaching or crossing an invisible boundary. Virtual fencing makes precision grazing possible without the need for physical fences. This technology originated... E. Maritan, K. Behrendt, J. Lowenberg-deboer, S. Morgan, M.S. Rutter

16. Optimizing Nitrogen Application in Global Wheat Production by an Integrated Bayesian and Machine Learning Approach

Wheat production plays a pivotal role in global food security, with nitrogen fertilizer application serving as a critical factor. The precise application of nitrogen fertilizer is imperative to maximize wheat yield while avoiding environmental degradation and economic losses resulting from excess or inadequate usage. The integration of Bayesian and machine learning methodologies has gained prominence in the realm of agricultural research. Bayesian and machine learning based methods have great... Z. Liu, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao

17. Data-driven Agriculture and Sustainable Farming: Friends or Foes?

Sustainability in our food and fiber agriculture systems is inherently knowledge intensive.  It is more likely to be achieved by using all the knowledge, technology, and resources available, including data-driven agricultural technology and precision agriculture methods, than by relying entirely on human powers of observation, analysis, and memory following practical experience.  Data collected by sensors and digested by artificial intelligence (AI) can help farmers learn about synergies... O. Rozenstein, Y. Cohen, V. Alchanatis , K. Behrendt, D.J. Bonfil, G. Eshel, A. Harari, W.E. Harris, I. Klapp, Y. Laor, R. Linker, T. Paz-kagan, S. Peets, M.S. Rutter, Y. Salzer, J. Lowenberg-deboer

18. Onboard Weed Identification and Application Test with Spraying Drone Systems

Commercial spraying drone systems nowadays have the ability to implement variable rate applications according to pre-loaded prescription maps. Efforts are needed to integrate sensing and computing technologies to realize on-the-go decision making such as those on the ground based spraying systems. Besides the understudied subject of drone spraying pattern and efficacy, challenges also exist in the decision making, control, and system integration with the limits on payload and flight endurance... Y. Shi, M. Islam, K. Steele, J.D. Luck, S. Pitla, Y. Ge, A. Jhala, S. Knezevic