Authors
Filter results4 paper(s) found. |
---|
1. X-Ray Computed Tomography For State Of The Art Plant And Root AnalysisDuring the last years, the formerly in medical applications established technique of X-ray computed tomography (CT) is used for non-destructive material analysis as well. Adapting this technique for the visualization and analysis of growth processes of plants above and underneath the soil enables new possibilities in the so called smart agriculture. Using State-of-the-art CT systems the computed 3D volume datasets allows the visualization and virtual analysis of hidden structures like roots... S. Reisinger, N. Uhlmann, R. Hanke, S. Gerth |
2. A Comparison of Three-Dimensional Data Acquisition Methods for Phenotyping ApplicationsCurrently Phenotyping is primarily performed using two-dimensional imaging techniques. While this yields interesting data about a plant, a lot of information is lost using regular cameras. Since a plant is three-dimensional, the use of dedicated 3D-imaging sensors provides a much more complete insight into the phenotype of the plant. Different methods for 3D-data acquisition are available, each with their inherent advantages and disadvantages. These have to be addressed depending on the particular... O. Scholz, F. Uhrmann, S. Gerth, K. Pieger, J. Claußen |
3. Quantification of Seed Performance: Non-Invasive Determination of Internal Traits Using Computed TomographyThe application of the 3D mean-shift filter to 3D Computed Tomography Data enables the segmentation of internal traits. Specifically in maize seeds this approach gives the opportunity to separate the internal structure, for example the volume of the embryo, the cavities and the low and high dense parts of the starch body. To evaluate the mean-shift filter, the results were compared to the usage of a median-smoothing filter. To show the relevance of the mean-shift extended image pipeline an automatic... J. Claussen, N. Wörlein, N. Uhlmann, S. Gerth |
4. X-ray Imaging in Breeding and Harvesting ProcessesThe application of X-ray technology has a long tradition in different medical and technical fields. Compared to other sensor systems, its advantages lie in the capability to reveal structures within objects non-destructively. The analysis of X-ray images with image processing methods is applied for quality control, the detection of foreign objects or damages and other anomalies (e.g. in organs or bones). Until recently, the application of X-ray was mainly constrained to stationary applications... M. Weule, E. Hufnagel, J. Claussen, A. Berghaus, S. Burkhart, P. Noack, S. Gerth |