Login

Proceedings

Find matching any: Reset
Betzek, N.M
Add filter to result:
Authors
Betzek, N.M
Souza, E.G
Bazzi, C.L
Schenatto, K
Gavioli, A
Maggi, M.F
Gavioli, A
Souza, E.G
Bazzi, C.L
Betzek, N.M
Schenatto, K
Beneduzzi, H.M
Schenatto, K
de Souza, E.G
Bazzi, C.L
Gavioli, A
Betzek, N.M
Beneduzzi, H.M
Bazzi, C.L
Araujo, R
Souza, E.G
Schenatto, K
Gavioli, A
Betzek, N.M
Schenatto, K
Souza, E.G
Bazzi, C.L
Gavioli, A
Betzek, N.M
Magalhães, P.S
Gavioli, A
Souza, E.G
Bazzi, C.L
Betzek, N.M
Schenatto, K
Betzek, N.M
Souza, E.G
Bazzi, C.L
Magalhães, P.G
Gavioli, A
Schenatto, K
Dall'Agnol, R.W
Topics
Spatial Variability in Crop, Soil and Natural Resources
Precision Nutrient Management
Decision Support Systems in Precision Agriculture
On Farm Experimentation with Site-Specific Technologies
Decision Support Systems
Geospatial Data
Type
Poster
Oral
Year
2016
2018
Home » Authors » Results

Authors

Filter results7 paper(s) found.

1. Rectification of Management Zones Considering Moda and Median As a Criterion for Reclassification of Pixels

Management zones (MZ) make economically viable the application of precision agriculture techniques by dividing the production areas according to the homogeneity of its productive characteristics. The divisions are conducted through empirical techniques or cluster analysis, and, in some cases, the MZ are difficult to be delimited due to isolated cells or patches within sub-regions. The objective of this study was to apply computational techniques that provide smoothing of MZ, so as to become viable... N.M. Betzek, E.G. Souza, C.L. Bazzi, K. Schenatto, A. Gavioli, M.F. Maggi

2. Delineation of Site-specific Management Zones Using Spatial Principal Components and Cluster Analysis

The delineation of site-specific management zones (MZs) can enable economic use of precision agriculture for more producers. In this process, many variables, including chemical and physical (besides yield data) variables, can be used. After selecting variables, a cluster algorithm like fuzzy c-means is usually applied to define the classes. Selection of variables comprise a difficult issue in cluster analysis because these will often influence cluster determination. The goal of this study was... A. Gavioli, E.G. Souza, C.L. Bazzi, N.M. Betzek, K. Schenatto, H. Beneduzzi

3. Data Normalization Methods for Definition of Management Zones

The use of management zones is considered a viable economic alternative for the management of crops due to low cost of adoption as well as economic and environmental benefits. The decision whether or not to normalize the attributes before the grouping process (independent of use) is a problem of methodology, because the attributes have different metric size units, and may influence the result of the clustering process. Thus, the aim of this study was to use a Fuzzy C-Means algorithm to evaluate... K. Schenatto, E.G. De souza, C.L. Bazzi, A. Gavioli, N.M. Betzek, H.M. Beneduzzi

4. Smart Agriculture: A Futuristic Vision of Application of the Internet of Things (IoT) in Brazilian Agriculture

With the economy based on agribusiness, Brazil is an important representative on the world stage in agricultural production, either in terms of quantity or cultivated diversity due to a scenario with vast arable land and favorable climate. There are many crops that are adapteble to soils of the country. Despite the global representation, it is known that the Brazilian agricultural production does not yet have a modern agriculture by restricting the use of new technologies to farmers with better... C.L. Bazzi, R. Araujo, E.G. Souza, K. Schenatto, A. Gavioli, N.M. Betzek

5. Use of Farmer’s Experience for Management Zones Delineation

In the management of spatial variability of the fields, the management zone approach (MZs) divides the area into sub-regions of minimal soil and plant variability, which have maximum homogeneity of topography and soil conditions, so that these MZs must lead to the same potential yield. Farmers have experience of which areas of a field have high and low yields, and the use of this knowledge base can allow the identification of MZs in a field based on production history. The objective of this study... K. Schenatto, E.G. Souza, C.L. Bazzi, A. Gavioli, N.M. Betzek, P.S. Magalhães

6. Variable Selection and Data Clustering Methods for Agricultural Management Zones Delineation

Delineation of agricultural management zones (MZs) is the delimitation, within a field, of a number of sub-areas with high internal similarity in the topographic, soil and/or crop characteristics. This approach can contribute significantly to enable precision agriculture (PA) benefits for a larger number of producers, mainly due to the possibility of reducing costs related to the field management. Two fundamental tasks for the delineation of MZs are the variable selection and the cluster analysis.... A. Gavioli, E.G. Souza, C.L. Bazzi, N.M. Betzek, K. Schenatto

7. Application of Routines for Automation of Geostatistical Analysis Procedures and Interpolation of Data by Ordinary Kriging

Ordinary kriging (OK) is one of the most suitable interpolation methods for the construction of thematic maps used in precision agriculture. However, the use of OK is complex. Farmers/agronomists are generally not highly trained to use geostatistical methods to produce soil and plant attribute maps for precision agriculture and thus ensure that best management approaches are used. Therefore, the objective of this work was to develop and apply computational routines using procedures and geostatistical... N.M. Betzek, E.G. Souza, C.L. Bazzi, P.G. Magalhães, A. Gavioli, K. Schenatto, R.W. Dall'agnol