Authors
Filter results19 paper(s) found. |
---|
1. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson |
2. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson |
3. On Farm Studies to Determine Seeding Rate in CornSeeding rate (SDR) is one of the most critical production practices impacting productivity and economic return for corn (Zea mays L.) By changing SDRs in different zones within a field, herein termed as site-specific management, better economic results can be produced as the outcome of reducing SDRs in low productivity areas and increasing SDRs under high-yielding environments, relative to the uniform SDR management performed by the producer. The aim of this study was to analyze yield responses... G. Balboa, S. Varela, I. Ciampitti, S. Duncan, T. Maxwell, D. Shoups, A. Sharda |
4. Real-time Gauge Wheel Load Variability on Planter with Downforce Control During Field OperationDownforce control allows planters to maintain gauge wheel load across a range of soil resistance within a field. Downforce control is typically set for a target seed depth and either set to manually or automatically control the gauge wheel load. This technology uses load cells to actively regulate downforce on individual row units by monitoring target load on the gauge wheels. However, no studies have been conducted to evaluate the variability in gauge wheel load observed during planter operation... A. Sharda, S. Badua, D. Flippo, I. Ciampitti, T.W. Griffin |
5. Rationale for and Benefits of a Community for On-Farm Data SharingMost data sets for evaluating crop production practices have too few locations and years to create reliable probabilities from predictive analytical analyses for the success of the practices. Yield monitors on combines have the potential to enable networks of farmers in collaboration with scientists and farm advisors to collect sufficient data for calculation of more reliable guidelines for crop production showing the probabilities that new or existing practices will improve the efficiency of... T. Morris, N. Tremblay, P.M. Kyveryga, D.E. Clay, S. Murrell, I. Ciampitti, L. Thompson, D. Mueller, J. Seger |
6. Influence of Planter Downforce Setting and Ground Speed on Seeding Depth and Plant Spacing Uniformity of CornUniform seed placement improves seed-to-soil contact and requires proper selection of downforce control across varying field conditions. At faster ground speeds, downforce changes and it becomes critical to select the level of planter downforce settings to achieve the desired consistency of seed placement during planting. The objective of this study was to assess the effect of ground speed and downforce setting on seeding depth and plant spacing and to evaluate the relationship of ground speed... A. Sharda, S. Badua, I. Ciampitti, R. Strasser, T.W. Griffin |
7. Analytical and Technological Advancements for Soybean Quality Mapping and Economic DifferentiationIn the past, measuring soybean protein and oil content required the collection of soybean seed samples and laboratory analyses. Modern on-the-go near-infrared (NIR) sensing technologies during the harvest and proximal remote sensing (aerial and satellite imagery) before harvest time can be used to provide an early estimate of seed quality levels, benchmark in-season predictions with at-harvest final seed quality and enable seed differentiation for farmers leading to better marketing strategies. Recent... A. Prestholt, C. Hernandez, I. Ciampitti , P. Kyveryga |
8. Developing a Decision Support Model for Informing N Fertilization in CornAssessing crop nitrogen (N) status is crucial for optimizing the application of N fertilizers in corn. The Critical Nitrogen Dilution Curve (CNDC) stands as a fundamental model supporting diagnostic tool for identifying the corn nitrogen (N) status. However, there is a need for efficient, non-destructive methods to estimate the crop N status. The objective of this study was to evaluate the potential of three handheld sensors: SPAD, LI-600, and Green Seeker to diagnose corn N deficiencies at early... L. Lemes bosche, I. Ciampitti |
9. Algorithm to Estimate Sorghum Grain Number from Panicles Using Images Collected with a Smartphone at Field-scaleAn estimation of on-farm yield before harvest is important to assist farmers on deciding additional input use, time to harvest, and options for end uses of the harvestable product. However, obtaining a rapid assessment of on-farm yield can be challenging, even more for sorghum (Sorghum bicolor L.) crop due to the complexity for accounting for the grain number at field-scale. One alternative to reduce labor is to develop a rapid assessment method employing computer vision and artificial intelligence... G.N. Nocera santiago, P. Cisdeli magalhães, I. Ciampitti, L. Marziotte |
10. Assessing Soybean Water Stress Patterns and ENSO Occurrence in Southern Brazil: an in Silico ApproachWater stress (WS) is one of the most important abiotic stresses worldwide, responsible for crop yield penalties and impacting food supply. The frequency and intensity of weather stresses are relevant to delimitating agricultural regions. In addition, El Nino Southern Oscillation (ENSO) has been employed to forecast the occurrence of seasonal WS. Lastly, planting date and cultivar maturity selection are key management strategies for boosting soybean (Glycine max (L.) Merr.) yield... A. Carcedo, L.F. Antunes de almeida, T. Horbe, G. Corassa, L.P. Pott, I. Ciampitti, G.D. Hintz, T. Hefley, R.A. Schwalbert, V. Prasad |
11. Environmental Characterization for Rainfed Maize Production in the US Great Plains RegionIdentifying regions with similar productivity and yield-limiting climatic factors enables the design of tailored strategies for rainfed maize (Zea mays L.) production in vulnerable environments. Within the United States (US) Great Plains region, rainfed maize production in Kansas is susceptible to weather fluctuations. This study aims to delimit environmental regions with similar crop growth conditions and to identify the main climatic factors limiting rainfed maize yield, using the state... L.N. Lingua, A. Carcedo, V. Gimenez, G. Maddonni, I. Ciampitti |
12. An Open Database of Crop Yield Response to Fertilizer Application for SenegalFood security is one of the major global challenges today. Africa is one of the continents with the largest gaps in terms of challenges for food security. In Senegal, about 60% of the population resides in rural areas and the cropping systems are characterized as a low productivity system, low input and in reduced areas, smallholder subsistence systems. Increasing crop productivity would have a positive impact on food security in this country. One of the main factors limiting crop productivity... F. Gomez, A. Carcedo, A. Diatta, L. Nagarajan, V. Prasad, Z. Stewart, S. Zingore, I. Ciampitti, P. Djighaly |
13. Spatial Predictive Modeling to Quantify Soybean Seed Quality Using Remote Sensing and Machine LearningIn recent years, the advancement of artificial intelligence technologies combined with satellite technology is revolutionized agriculture through the development of algorithms that help producers become more sustainable. This could improve the conditions of farmers not only by maximizing their production and minimizing environmental impact but also due to better economic benefits by allowing them to access high-value-added markets. Furthermore, the use of predictive tools that could improve the... C. Hernandez, P. Kyveryga, A. Correndo, A. Prestholt, I. Ciampitti |
14. Spatio-temporal Variability of Intra-field Productivity Using Remote SensingUnderstanding the spatiotemporal variability in intra-farm productivity is crucial for management in making agronomic decisions. Furthermore, these decision-making processes can be enhanced using spatial data science and remote sensing. This study aims to develop a framework to asses the spatio-temporal variability of intra-farm productivity through historical satellite data and climate data. Historical satellite data and rainfall information from diverse fields across the United States (2016-2022)... E. Van versendaal, C. Hernandez, P. Kyveryga, I. Ciampitti |
15. A Digital Interactive Decision Dashboard to Analyze, Store and Share Year-to-year Crop Genotype YieldThe lag time between data collection and sharing is a critical bottleneck in order to make impactful decision at farmer field-scale. Following this line, there is a need for developing a digital interactive decision dashboard for sharing results of crop trials, in parallel to establish a database for storing data. These crop trials, invaluable for farmers seeking to determine the optimal genotype for their crops, are at risk of becoming obsolete due to the current format and the lack of more near... P. Magalhaes cisdeli, G.N. Nocera santiago, I. Ciampitti, C. Hernandez |
16. Exploring Crop Suitability in Senegal Across Global Warming Scenarios: an In-silico ApproachFood production systems in Africa are fragile and vulnerable to climate change. In this context, rising temperatures are the primary cause of the anticipated negative climate change impacts on crop yields. Future yield reductions poses a challenging setting for smallholders to attain self-sufficiency, but new opportunities for managing the risk via implementationof decisions towards mitigate these negative effects from an economic, nutritional, and productive standpoint. Therefore, the objectives... A. Carcedo, I. Ciampitti |
17. Using Remote Sensing to Quantify Biomass in AlfalfaSatellite images are a useful decision support tool to optimize management practices at on-farm scale. Based on this, the development of predictive tools to estimate pasture biomass can be a promising framework to determine the best cutting time, maximizing biomass without compromising yield parameters. Therefore, the main objective of this study was to develop a regression model that allows estimating a value of biomass to give as a recommendation to farmers. To collaborate in their decision... M.F. Lucero, A. Zajdband, C. Hernandez, I. Ciampitti, A. Carcedo |
18. From Scientific Literature to the End User: Democratizing Access to Data Products Through Interactive ApplicationsIn recent years, the sustained advance in the creation of powerful programming libraries is allowing not only the creation of complex models with predictive capabilities but also revolutionizing visualization processes and the deployment of interactive applications. Some of these tools, such as Streamlit or Shiny frameworks in languages such as Python or R, allow us to create from simple applications with friendly interfaces to complex tools. These interactive digital decision dashboards allow... C. Hernandez, A. Correndo, J. Lacasa, P. Magalhaes cisdeli, G.N. Nocera santiago, I. Ciampitti |
19. Trends in Agricultural Technology Advancements: Insights from US Patent AnalysisMeeting the demand for food, fiber, and fuel production while addressing environmental concerns and enhancing societal benefits underscores the need to transition to conservation approaches and sustainable intensification pathways in current agricultural cropping systems. Technological advances in agriculture offer promising opportunities to facilitate this transition. Following this rationale, this study aims to analyze prevailing trends in agricultural technology advancements. Active patents... P.B. Cano, A. Carcedo, F. Gomez, C. Hernandez, V. Gimenez, I. Ciampitti |