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Abstract.  
Comprehensive nitrogen (N) management, emphasizing the 4Rs nutrient stewardship concept 
to optimize N fertilizer rate, timing, sources, and placement is essential for sustainable 
agriculture. However, determination of the optimal N management strategy is complex and 
context-dependent, influenced by various factors such as weather, management practices, and 
field characteristics. This complexity necessitates tailored recommendations rather than one-
size-fits-all solutions. Crop modeling emerges as a valuable tool for rapidly evaluating 
alternative management strategies across different contexts, considering their holistic impacts 
on agronomic, economic, and environmental outcomes. This research aimed to demonstrate the 
application of calibrated models and scenario analysis to assess alternative N management 
strategies. Specifically, we proposed a scoring system to comprehensively evaluate agronomic, 
economic, environmental, and logistical impacts of N management strategies relative to 
standard fertilizer timing practices prevalent in the study region. We conducted simulations for 
ten fertilizer timing scenarios using the Agricultural Production Systems sIMulator (APSIM) 
model over 24 historic weather years at two field sites in southeast Nebraska. Analysis of the 
simulations were used to derive the economic optimum N rate (EONR), yield at EONR 
(YEONR), and N leaching at EONR. We introduced a logistic index to assess the practical 
feasibility of proposed management changes, considering the available days for fertilization 
relative to the days needed for a standard farm size. A comprehensive scoring metric facilitated 
tradeoff exploration among multiple performance indicators. Results revealed that split 
application with 40% applied as spring preplant and 60% applied at V12 reduced EONR by 14% 
and N loss by 46% compared to standard practices (fall application). Furthermore, all scenarios 
including spring application timing showed an improvement in the logistic index. The 
comprehensive scoring matrix revealed that the fertilizer timing with the greatest potential of 
reducing EONR and N loss also had increased (but not the greatest) logistical index compared 
to the standard management. Looking forward, interdisciplinary collaboration and 
advancements in process-based modeling can enhance the scope and robustness of our 
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scoring matrix. Establishing clear thresholds for score assignment and defining minimum 
calibration standards can improve the repeatability and scalability of the proposed approach. 
Overall, our framework presented a valuable tool for informing region-specific fertilizer 
management decisions, promoting holistic approaches that balance agronomic, economic, and 
environmental considerations. 
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Introduction  
Effective management of nitrogen (N) is critical for sustaining crop productivity (Cassman, 1999; 
N. D. Mueller et al., 2012), minimizing adverse environmental impacts (Bowles et al., 2018; 
Sobota et al., 2015), and enhancing farm profitability (Koch et al., 2004; Rajsic et al., 2009) but 
remains challenging due to spatial and temporal variability in crop yield potential, soil N supplying 
capacity, and N loss rates. As such, extensive research has been dedicated to developing means 
to determine the optimum N rate for specific locations and years (Cassman et al., 2002; Mamo et 
al., 2003; Puntel et al., 2019).  
Furthermore, a comprehensive approach to N management involves considering all facets of N 
management. This holistic perspective is reflected in the “4Rs” nutrient management concept, 
which advocates for the right rate, right time, right source, and right place for fertilizer application 
(Bruulsema et al., 2009; International Fertilizer Industry Association, 2009). The 4R framework 
serves as an educational tool and decision-making guide and acknowledges the 
interconnectedness and context specificity of optimal N management practices, which can vary 
based on crop management strategies, geographic region, and climatic conditions.  
For instance, while many studies generally recommend in-season N management for its ability to 
synchronize fertilizer application with plant demand (Cassman et al., 2002; Raun & Johnson, 
1999; Solari et al., 2008) and utilize tools like plant and soil analysis, imagery, sensors, and 
models for informed decisions (Ransom et al., 2020), these recommendations must be context-
specific. In some cases, in-season sidedress applications have been demonstrated to produce 
higher yields than preplant applications for irrigated corn grown on sandy soils (Rehm & Wiese, 
1975). However, in-season sidedress applications have also been associated with increased N 
rates resulting in larger N balances and greater N losses (McLellan et al., 2018; Tenorio et al., 
2021). Moreover, in non-irrigated environments, such applications may reduce yields and profits 
due to insufficient incorporation through rainfall or injection (Teten, 2021). These examples 
underscore the interplay between rate, time, source, and place, highlighting the need for tailored 
recommendations that consider all 4R principles, specific to the region and management practices 
(Spackman & Fernández, 2018). 
Furthermore, the 4R concept emphasizes the importance of aligning management practices with 
stakeholders’ diverse goals and interests, necessitating the selection of relevant performance 
indicators. Although efforts have been made to integrate environmental and economic impacts of 
N management (Mandrini et al., 2021; Nigon et al., 2019), existing approaches often lack 
comprehensive assessments of agronomic, economic, environmental, social, and logistical 
aspects, along with their tradeoffs. As a result, determining the most suitable 4R strategies for a 
region often sparks debates among stakeholders with divergent priorities.  
Traditionally, determining the optimal N practices across various regions and weather scenarios 
has relied on costly and time-consuming imposed treatment experiments. Decision-makers 
typically rely on fragmented interpretations of these research studies that may not 
comprehensively evaluate the 4Rs or consider multiple performance indicators simultaneously. 
In some cases, research results have been aggregated and ranked to guide management 
recommendations and inform decisions (Iowa State University Science Team, 2012; Mandrini et 
al., 2021; Nigon et al., 2019). However, such approaches have limitations in assessing the 
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interconnected nature of management changes and their impact on diverse performance 
indicators. Additionally, the availability of research results covering a vast selection of N 
management strategies under various managements in various regions may be limited. 
Considering these challenges, employing crop modeling offers a promising avenue for evaluating 
the long-term effects of alternative N management strategies for specific geographic regions.  
By creating a means of recommending tailored 4Rs by region through crop modeling, the inter-
annual weather variations, and context specific considerations can greatly benefit decision and 
policy makers. Therefore, this paper aims to achieve two primary objectives: (1) demonstrate the 
application of a calibrated model in assessing alternative N management strategies in southeast 
Nebraska and (2) introduce a scoring system designed to comprehensively evaluate the 
agronomic, economic, environmental, and logistical impacts of alternative management strategies 
relative to standard practices prevalent in the region over time. 

Materials and Methods 

Nitrogen management scenarios with calibrated APSIM model 
A calibrated Agricultural Production Systems sIMulator (APSIM) model (Figure 1a; Thompson et 
al., 2024, accepted with revisions) was used to test ten N fertilization timing scenarios (Table 1) 
over 24 weather years (1999 to 2022) within 4 field-zone locations and 36 N rates in southeast 
Nebraska (Figure 1b). Site DA is in a floodplain landscape position with silt loam soils while site 
ZH is an upland field with silty clay loam soils. The sites are non-irrigated and in a humid 
continental climate (warm, rainy summers) with annual precipitation of 726 mm and a mean 
temperature of 12°C. Fertilization dates were set based on the average observed farmer 
fertilization dates for the previous 10 years. Fall and spring base applications were simulated with 
anhydrous ammonia as the fertilizer source while in-season applications were simulated with 32% 
urea ammonium nitrate (UAN) as the fertilizer source.  
Local farmer standard practices (FSP) were defined using survey data. The USDA Economic 
Research Service reported that in 2018 (most recent available year) N application for corn grown 
in Nebraska was 185 kg ha-1 (Fertilizer Use and Price, 2019). In 2023, a statewide survey reported 
that for MLRA 106 (n=41) where the study occurred, anhydrous application was the most common 
product (62%), fall was the most common timing (38%), and the average rate applied was 174 kg 
ha-1 (Nebraska State Digital Agriculture Survey; IRB Number 20230122510EX, data 
unpublished). Therefore, we defined the FSP in this region as fall anhydrous ammonia application 
at a rate of 174 kg ha-1.  
Transitioning to a spring anhydrous ammonia application is considered an improved practice 
which requires minimal infrastructure adjustments and thus represents the most straightforward 
scenario change. Scenarios that apply the majority of fertilizer pre-plant (75% fall or spring base 
applications with 25% during the growing season) are regarded as improved strategies that are 
more risk-adverse. Conversely, scenarios with greater fertilization in-season (40% fall or spring 
base applications with 60% in-season) are generally considered best management practices (S. 
M. Mueller et al., 2017; Scharf et al., 2002), but often demand a higher level of risk tolerance from 
growers, given the delay in application of a larger portion of the total N fertilizer (Sawyer et al., 
2016). Scenarios which apply in-season N at V5 can be accomplished with standard ground 
application equipment while scenarios which apply in-season N at V12 require more specialized 
equipment such as a high-clearance applicator or airplane. The apsimx package (Miguez, 2022) 
in R was used to run simulations of the calibrated model on the UNL Holland Computing Center 
virtual machines (Figure 1c). 
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Figure	1.	Framework	for	assessing	impact	of	nitrogen	management	strategies	using	crop	modeling,	including	(a)	conducting	
N	rate	trials,	collecting	data,	and	calibrating	the	crop	model,	(b)	creating	nitrogen	fertilization	scenarios	to	test	using	the	
calibrated	model	considering	varying	weather	and	field	locations,	(c)	running	scenario	simulations,	and	(d)	analyzing	the	
impact	of	each	scenario	on	agronomic,	environmental,	and	logistical	considerations	and	assigning	scores.	Artwork	by	Tim	
Svoboda	and	Faith	Junck.	

 
 	



5 
Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

Table	1.	Fertilizer	application	timing	scenarios	evaluated	by	crop	model	simulation.	

Scenario Name Base 
Application 
Date 

Base App-
lication 
(%) 

In-Season Application Date In-Season 
Application 
(%) 

Fall November 30 100 None None 
Fall V5 25 Split November 30 75 May 30 (DA)/June 2 (ZH) 25 
Fall V12 25 Split November 30 75 June 25 (DA)/June 22 (ZH) 25 
Fall V5 60 Split November 30 40 May 30 (DA)/June 2 (ZH) 60 
Fall V12 60 Split November 30 40 June 25 (DA)/June 22 (ZH) 60 
Spring March 15 100 None None 
Spring V5 25 Split March 15 75 May 30 (DA)/June 2 (ZH) 25 
Spring V12 25 Split March 15 75 June 25 (DA)/June 22 (ZH) 25 
Spring V5 60 Split March 15 40 May 30 (DA)/June 2 (ZH) 60 
Spring V12 60 Split March 15 40 June 25 (DA)/June 22 (ZH) 60 

Nitrogen management scenario analysis and scoring 
Nitrogen Fertilization Scenario Scoring Matrix 

To evaluate agronomic, environmental, and logistical impacts of a given timing scenario, we 
devised a scoring matrix which ranked the impact of timing on EONR, N loss, and logistics with 
higher scores indicating greater benefit and feasibility for the timing practice. Scores were 
benchmarked relative to the FSP (100% fall anhydrous) using the intervals shown in Table 2. The 
overall score was calculated as the sum of the EONR, N loss, and logistics scores (Figure 1d). 
Details of the agronomic (YEONR and EONR), environmental (N loss), and logistics analyses 
follow. Given the lack of differences in metrics within field zones, our analysis predominantly 
focuses on field-level differences. Additionally, for instances where field-specific responses were 
minimal, outcomes were consolidated across sites.  
	
Table	2.	Values	used	to	assign	scores	of	0	(low	change)	to	3	(high	change)	relative	to	farmer	standard	practice	(FSP)	for	
metrics	of	economic	optimum	nitrogen	(N)	rate	(EONR),	N	loss,	and	logistics	index	(LI).	

 Change Relative to 
Farmer Standard Practice (FSP) Score 

EONR* (kg ha-1) 

30 to -30 0 
-30 to -60 1 
-60 to -90 2 
-90 to -120 3 

N Loss (kg ha-1) 

15 to -15 0 
-15 to -45 1 
-45 to -75 2 
-75 to -105 3 

LI 
<1 0 

1 to 3 1 
3 to 5 2 

>5 3 
*For EONR, values that were within +/- 30 kg ha-1 were considered reasonably close based on modeling 
error associated with EONR (Ransom et al., 2023) and were assigned a score of 0.  

 
Agronomic 

The EONR was derived from fitting regressions through the yield response to N rate for each 
simulation of site-zone, year, and scenario using R software (R Core Team, 2020). Yield response 
to N was described using a quadratic plateau model, 
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𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥!, 𝑥 < 𝑥" (1) 

𝑦 = 𝑎 + 𝑏𝑥" +	𝑐𝑥"!, 𝑥	 ≥ 𝑥" (2) 

 
or linear plateau model,  

𝑦 = 𝑎 + 𝑏𝑥, 𝑥 < 𝑥#  (3) 

𝑦 = 𝑎 + 𝑏𝑥#, 𝑥 > 𝑥#  (4) 

where y is yield (kg ha-1), x is the N rate (kg ha-1), a is the y-intercept, b is the linear coefficient, c 
is the quadratic coefficient, and xo is the inflection point or join point. The statistical model with 
lowest Akaike information criterion (AIC) was selected with the same statistical model (quadratic 
or linear plateau) chosen for all fertilizer timings in a given year and field-zone (Baum et al., 2023; 
Miguez & Poffenbarger, 2022). A fixed price ratio of 4.5:1 N:corn grain price (US$ kg-1 N: US$ kg-
1 grain) was used to be representative of the study year (Bullock & Bullock, 2000). For the 
quadratic plateau model, EONR was calculated from the N response equations by setting the first 
derivative of the fitting response curve equal to the price ratio. When the inflection point of the 
quadratic model exceeded the maximum N rate applied, the EONR was assumed to be the 
maximum rate. For the linear plateau model, EONR was the inflection point between the linear 
portion and the plateaued portion of the model. YEONR was predicted by using the EONR as the 
N rate and solving for y. 
Environmental 

Annual N losses for each scenario were determined by selecting the simulated annual N loss at 
the N rate that corresponded to the calculated EONR for a given field-zone, year, and timing 
scenario.  
Logistics 

To determine the feasibility of the various application timing scenarios, we calculated a logistic 
index (LI). First an unweighted logistic index (LIuw) was calculated as, 

𝐿𝐼$% = 𝐷&/𝐷'  (5) 

where Df is the number of days with conditions feasible for application and Dn is the number of 
days needed to complete applications for an average sized farm. Values greater than or equal to 
one indicate the application is feasible while values less than one indicate there are not enough 
days with acceptable conditions to complete the application. To calculate Df we considered a one-
month timeframe around the fall and spring application dates and two-week timeframe around the 
V5 and V12 application dates, with target application dates from the model scenarios (Table 1). 
For a day to be considered acceptable for fertilization, soil temperature at 2.54 cm must be above 
freezing, soil moisture at 30 cm must be below 105% of the modeled field capacity, and for fall 
application, soil temperature at 10.16 cm must be below 10°C (Frederick & Broadbent, 1966; 
Sawyer, 1985). To determine the Dn we first calculated the effective field capacity (ASAE EP496.2 
DEC99 Agricultural Machinery Management, 1999) as, 

𝐶( =
)%*!
+#

  (6) 

where Ca is the area capacity in ha h-1, s is field speed in km h-1, w is implement working width in 
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m, and Ef is field efficiency as a decimal. The working days needed to complete fertilization (Dn) 
was then determined as, 

𝐷' = 𝐹𝑎𝑟𝑚	𝑆𝑖𝑧𝑒	/	𝐶(	/	𝑊𝑜𝑟𝑘𝑖𝑛𝑔	𝐻𝑜𝑢𝑟𝑠	𝑝𝑒𝑟	𝐷𝑎𝑦 (7) 

where Dn is days needed rounded to the nearest whole number; farm size is in ha, Ca is area 
capacity in ha/h, and hours per day are the estimated working hours available per day.  
The LIuw values were first calculated for each timing scenario (Fall, Spring, V5, and V12) and then 
weighted based on the percent of fertilizer to be applied in each of the timing scenarios shown in 
Table 1 to get the final, weighted LI as follows, 

𝐿𝐼 = (𝐿𝐼, × 𝑃,) + (𝐿𝐼- 	× 𝑃-)/	2  (8) 

where LIB is the logistic index of the base N application (fall or spring), LIS is the logistic index of 
the in-season N application (V5 or V12), PB is the proportion of the N applied as a base application 
(fall or spring) and PS is the proportion of the N applied as an in-season application (V5 or V12). 

Results 
In the following sections, we presented the influence of N fertilizer timing scenarios on agronomics 
(YEONR and EONR), N losses, and the feasibility metric (LI). We then showed results from a 
comprehensive scoring matrix which summarized the improvement in EONR, N loss, and LI 
compared to the FSP into an overall score. 

Agronomic (YEONR and EONR) 
Mean simulated YEONR was similar between sites (15,497 kg ha-1). For a given location and 
year, the difference in YEONR due to timing scenarios was on average 34 kg ha-1 and the 
maximum difference was 112 kg ha-1, indicating that maximum yields can be obtained for all timing 
scenarios by adjusting N rates.   
Mean simulated EONR was not statistically different between fields (p=0.307) and averaged 116 
kg ha-1. EONR ranged from 27 to 250 kg ha-1 for DA (silt loam floodplain) and 32 to 286 kg ha-1 
for ZH (silty clay loam upland). Impact of timing scenarios on EONR was statistically significant 
(P=0.061) and similar between the silt loam floodplain (DA) and silty clay loam upland field (ZH). 
Across years and sites, moving from the FSP timing of fall application to spring application 
resulted in a 6.6% reduction in EONR. Moving from FSP timing to a split application with 75% in 
the fall and 25% in season represented a 5.5% decrease in N requirement. Similarly, moving from 
100% spring application to a split application with 75% in the spring and 25% in season 
represented a 3.8% decrease in EONR. Moving from fall application to a split application with 
40% applied in the spring and 60% applied in season resulted in 14.3% reduction in N required. 
Adjusting timing of the in-season application by moving from V5 to the later season V12 resulted 
in a 2.4% reduction in N required.  

Environmental (N Loss) 
Annual N loss was statistically different (p=0.0003) between field sites with slightly greater N loss 
(32.4 ± 18.6 kg ha-1) for the silt loam floodplain compared to the silty clay loam upland site (28.1 
± 17.7 kg ha-1). Annual N loss was also statistically different between timing scenarios (p<0.0001). 
The greatest N loss occurred for the fall timing (average of 41.6 ± 26.3 kg ha-1) and the least N 
loss occurred for the 40% applied in spring and 60% applied at V12 (average of 22.5 ± 10.8 kg 
ha-1). On average, moving from fall to spring resulted in a 20.9% decrease in N loss, while moving 
from fall to 40% in spring with 60% in season resulted in a 39.7 to 45.9% reduction in N loss for 
V5 and V12 applications, respectively.  
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Logistics 
Fall or spring fertilization with anhydrous ammonia required more days to complete (6 days) 
compared to V5 or V12 application with UAN (2 days) due to differences in applicator widths and 
speeds. Fall application had the greatest number of conditions that had to be met for a day to be 
considered acceptable, and thus, fertilization was only able to be completed in 50% to 58% of 
years. However, even if the additional fall condition of not applying when soil temperatures are 
above 10°C was disregarded, as may be the case in practice, the percent of years in which fall 
fertilization was feasible did not increase. The silt loam floodplain site with the presence of a 
shallow water table had fewer years in which fall fertilization was feasible (50%) compared to the 
silty clay loam upland (58%). All other timings evaluated (Spring, V5, and V12) were able to 
accomplish the N fertilization in most or all the years evaluated. Spring fertilization in 2019 was 
infeasible at both sites in accordance with observed heavy rainfall and early spring flooding that 
was experienced at the sites. Only the V12 timeframe was able to be completed for both sites in 
all years evaluated. 

Scoring Matrix  
The timings that included a fall application had overall scores ranging from 0.09 to 0.7, indicating 
negligible improvement by adding a sidedress application when compared to the FSP (100% 
applied in fall; Figure 2). Timing scenarios that included spring applications had higher scores 
(ranging from 0.88 to 1.48). When comparing fall versus spring base applications with the same 
sidedress timing and proportions, the spring base rate resulted in a 2 to 10 times greater score 
compared to the fall base rate. The highest overall score (sum of EONR, N Loss, and LI) was for 
the timing with 40% in the spring and 60% at V12 (Spring V12 60Split) with an average overall 
score of 1.48 and nearly 75% of years having at least a one category improvement compared to 
FSP (Figure 2). The overall score for Spring V12 60Split was primarily due to improvements in N 
losses (score of 0.63) and LI (score of 0.58). The next highest overall score was for the spring 
timing, with an average score of 1.36. The spring timing and a greater number of years with at 
least a one category improvement (nearly 90%) compared to the timing with 40% in the spring 
and 60% at V12 (Spring V12 60Split). A high LI score (1.17) was the biggest contributor to the 
overall score for the spring timing.  
Across timings evaluated, the improvements in EONR relative to FSP were negligible with scores 
of 0 to 0.27 (Figure 2). Nitrogen loss scores had a greater improvement relative to FSP. The 
greatest N loss score was for the timing with 40% in the spring and 60% at V12 (Spring V12 
60Split); this timing scenario had an average score of 0.63 and over 50% of years with a one 
category or greater improvement in N loss (Figure 2). For LI, all timing scenarios with any fall 
application had negligible improvement in scores (scores of 0 to 0.06; Figure 2). The greatest 
improvement in logistic index was for the spring application timing which had an average score of 
1.17 and over 80% of years with a one category or greater improvement. The timing with 40% in 
the spring and 60% at V12 (Spring V12 60Split) had an average LI score of 0.58 and over 50% 
of the years with a one category or greater improvement (Figure 2).  
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Figure	2.	Scoring	matrix	considering	economic	optimum	nitrogen	rate	(EONR),	nitrogen	loss	(N	Loss),	and	logistics	(LI)	for	
nitrogen	timing	scenarios	evaluated.	Scores	range	from	0	(worst)	to	5	(best)	and	are	relative	to	the	farmer	standard	practice	
(FSP)	timing	of	fall	application.	Donut	colors	show	the	percent	of	24	historic	years	evaluated	with	a	given	score,	while	the	
average	score	across	years	is	printed	in	the	middle	of	the	donut	in	black	text.	The	overall	score	is	the	sum	of	the	EONR,	N	Loss,	
and	LI	scores.	
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Discussion 

YEONR, EONR, N Loss, and Logistic Index 
We utilized a calibrated model to evaluate the impact of ten N fertilizer timing strategies on a suite 
of metrics encompassing agronomic, economic, environmental, and logistical considerations. 
Yield at EONR was similar for all N timing scenarios, indicating that by adjusting N rate, all timing 
scenarios were able to achieve similar yields. Previous research has noted that moving from fall 
to spring pre-plant applications resulted in a 4% yield increase and moving from fall to 40% applied 
as spring preplant and 60% applied as sidedress resulted in a 10% yield increase, suggesting 
that fall N application was a yield-limiting factor (Iowa State University Science Team, 2012). We 
did not observe this yield change which may be because our method adjusts N rate at each timing 
to EONR whereas other studies used fixed fertilizer rates which when applied in the fall may have 
been insufficient for obtaining optimal yield due to increased time in which the fall applied fertilizer 
was subject to N losses. In other words, by adjusting the N rate at each timing to EONR, we were 
able to maintain yield production (YEONR). 
EONR decreased by moving from the FSP timing to other timing scenarios, with the greatest 
reduction (14.3%) for the scenario with 40% applied in the spring and 60% applied at V12. This 
agrees with proposed best practices which suggest that delaying a greater portion of N fertilizer 
to the time when the crop is rapidly uptaking N will increase N efficiency (S. M. Mueller et al., 
2017; Scharf et al., 2002). It is notable that moving from fall application to spring application 
resulted in a 6.6% decrease in EONR. This represents the most straightforward timing change as 
it requires no additional trips through the field, no additional fuel or labor, and no changes to 
equipment or fertilizer source and thus may be the most likely to be adopted. The reduction in 
EONR (6.6%) by moving from fall to spring is slightly greater than that proposed by UNL N 
recommendations for corn which suggest this change results in a 5% decrease in N fertilizer 
requirements (Shapiro et al., 2019). 
Our comparison to FSP focused primarily on the relative differences in EONR between FSP timing 
and other simulated timings rather than comparing FSP rate with the EONR values obtained at 
other simulated timings. This is because previous literature has demonstrated the difficulty in 
accurately predicting EONR (Baum et al., 2023; Mandrini et al., 2021; Puntel et al., 2016; Sela et 
al., 2018) resulting in less confidence in the absolute values of modeled EONR compared to 
relative differences between timing scenarios. Our results suggested that the impact of adjusting 
the FSP rate to EONR was over twice as impactful as adjusting the FSP timing to the timing with 
the lowest EONR (40% applied in the spring and 60% applied at V12) in reducing fertilizer N need. 
Thus, if improvements in crop modeling can result in more accurate EONR simulation (Baum et 
al., 2023), the opportunity to use this method for benchmarking impact of N rate changes 
compared to standard practice could be even more impactful. 
The reduction in N loss by moving from fall to spring application (20.9%) and by moving from fall 
to 40% in spring and 60% in-season (39.7% to 45.9%) was much greater than that observed in 
previous research which noted decreases in nitrate-N of 6% and 5% for these timing changes, 
respectively (Iowa State University Science Team, 2012). However, the previous research (Iowa 
State University Science Team, 2012) acknowledges large standard deviations (25 for moving 
from fall to spring and 28 for moving from fall to 40% in spring and 60% in-season) which indicate 
that some years have potential for much higher or lower N loss reductions by adjusting timing.  
From a feasibility standpoint, the LI allowed us to quantify the likelihood of being able to complete 
field work for fertilization using various timing strategies given specific soils and weather 
conditions in the region. The silt loam bottom field (DA) had fewer years in which fertilization could 
be completed (50%) compared to the silty clay loam upland (ZH; 58%) which is expected due to 
the presence of a water table at DA resulting in wetter soils. These differences highlight the need 
for tools that can forecast trafficability based on weather and soil (Müller et al., 2014; Obour et al., 
2017). The relative increase in feasibility (greater days available for fertilization relative to days 
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required) for moving from fall to spring, indicates that this timing scenario may be more likely to 
be adopted by farmers. This does raise the question of why this strategy has not been adopted 
previously. It is possible that fall application is seen as a risk management approach as farmers 
can first try to apply in the fall, then if the conditions are not favorable, they still have time to try in 
the spring. This approach effectively allows for more total days for potential fertilization by 
summing the available days available in the fall and spring. The development of a LI is critical in 
more comprehensively assessing the potential for proposed management changes to be adopted. 

Strengths, Limitations, and Recommendations of a Proposed Alternative Fertilizer 
Management Scoring Matrix 
The proposed scoring matrix (Figure 2) incorporates agronomic, economic, environmental, and 
logistical aspects and has potential to rapidly provide site- and region-specific comparisons of 
alternative management strategies, such as fertilizer timing. The proposed method is flexible and 
customizable, allowing experts to choose scenarios to evaluate, select metrics to use, define 
thresholds for assigning scoring, and determine the FSP by which to compare alternatives. For 
example, in our case, we did not include YEONR or another metric for production as part of our 
overall scoring matrix (Figure 2) because we found that it did not differ substantially between 
scenarios evaluated; however, in other cases, experts may find this metric to be relevant (Iowa 
State University Science Team, 2012). Similarly, in our study, the contrasting sites (silty clay loam 
upland and silt loam floodplain) were similarly impacted by adjusting fertilizer timing; therefore, 
one scoring matrix (Figure 2) was used for both sites. However, in regions with greater differences 
in soil and landscape position, differences may be more profound and may warrant unique scoring 
matrices to provide more site-specific management recommendations (Scharf et al., 2005). While 
our work focused primarily on the aspect of fertilizer timing, this method can be applied to other 
aspects of 4R management including source, placement, and rate and combinations thereof. In 
the future, we propose that this framework could be scaled within an online tool (Rattalino Edreira 
et al., 2018) that allows users to select their region and see scores for various metrics of interest, 
assess tradeoffs, and better understand the impact of different management considerations. To 
this end, we identified four considerations for enhancing the ability to scale the proposed 
framework into a robust tool.  
First, an interdisciplinary effort is needed to develop comprehensive metrics for all aspects to be 
considered. For example, in this proof of concept, our assessment of economic impacts is limited 
to EONR; additional economic metrics could enhance this analysis by exploring ways to capture 
the varying cost of fertilizer purchased at different times of the year, varying cost of different 
fertilizer sources, additional cost of fuel for multiple trips across the field, and additional equipment 
and labor needs. Along this same line, societal metrics could be incorporated to make the scoring 
matrix more complete. 
Second, further development of process-based modeling outputs could strengthen the metrics we 
included in the framework. For example, our environmental metric considered only N leaching 
which can be readily simulated by the APSIM model; however, the environmental assessment 
would be strengthened by including other N losses such as ammonia emissions, which are not 
well accounted for in current process-based models but have been the subject of recent research 
(Balasubramanian et al., 2017; Beuning et al., 2008; Liu et al., 2020). Further, modeling of 
environmental impacts of fuel consumption and exhaust emissions related to additional trips 
across the field for sidedress applications could be considered (Lovarelli et al., 2018). The 
incorporation of these aspects into the model would enable a more comprehensive assessment 
of environmental impacts.   
Third, we found a lack of literature defining the impact of various magnitudes of change in the 
metrics we evaluated was a limitation for score assignment, resulting in somewhat arbitrary 
assignments of scores (Table 2, Figure 2). Preferably, scores would be assigned based on 
intervals of practical relevance. For example, previous studies have found that EONR values 
within 30 kg ha-1 are reasonably close based on the modeling error associated with EONR 
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(Ransom et al., 2023); therefore, this can provide a guideline for determining thresholds for score 
assignments (Table 2). Similar information on the accepted error around various metrics or the 
value that causes substantial impact are lacking or fragmented in literature, resulting in challenges 
in developing a repeatable protocol for score assignment.  
Fourth, to promote more rapid adoption of this method, we recommend that a minimum dataset 
for model calibration be determined. While our study benefited from detailed model calibration, 
we acknowledge this aspect could pose limitations. Therefore, establishing a minimum required 
dataset for model calibration and exploring the integration of remote sensing could facilitate rapid 
expansion of the proposed method into a digital tool (Hunt L. A. and Boote, 1998; Manivasagam 
& Rozenstein, 2020; Montesino-San Martin et al., 2018). 
By addressing these four considerations, we expect our framework to be scalable to offer valuable 
region-specific N insights, aiding holistic decision-making that incorporates diverse perspectives 
from various stakeholders. Such tools offer tremendous value for tackling the intricate challenge 
of fertilizer management, particularly given the competing interests of numerous stakeholders. 

Conclusion 
Our study presents a customizable framework designed to assess the comprehensive impact of 
proposed fertilizer management changes, with a focus on the principles of 4R nutrient 
stewardship. Through model calibration and scenario analysis, we identified a promising N timing 
scenario (split application with 40% applied as spring preplant and 60% applied at V12) that 
decreased EONR (14%) and N loss (46%) compared to standard practices in the region. The 
introduction of a logistic index proved instrumental is assessing the practical feasibility of 
proposed N management changes, revealing numerous scenarios (all those which included a 
spring application) capable of improving logistical feasibility compared to the standard practice of 
fall application. The implementation of a comprehensive scoring matrix facilitated the exploration 
of tradeoffs among multiple performance indicators, providing valuable insights for decision 
makers.  
Looking ahead, our study identifies several opportunities to enhance the feasibility and 
applicability of our scoring matrix. Interdisciplinary efforts would enrich the development of 
comprehensive metrics, while advancements in process-based modeling can broaden the scope 
of our framework. Additionally, establishing clear thresholds for score assignment and defining 
minimum calibration datasets can enhance the repeatability and scalability of our approach.  
By addressing these challenges, the proposed framework shows great potential as a valuable 
tool for informing region-specific fertilizer management decisions. Integration of a model-based 
scoring system into a decision-support system can provide stakeholders with actionable insights, 
promoting holistic approaches that balance agronomic, economic, and environmental 
considerations. Our work underscores the importance of applying research and innovation to 
develop digital tools that can inform more resilient and efficient nutrient management practices.  
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