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Abstract.  
Fertilization is crucial in cereal grain production, with nitrogen being a key yet volatile nutrient. 
Precision agriculture allows for tailored nitrogen recommendations using detailed spatial and 
temporal data. Most profitability studies of variable rate nitrogen (VRN) fertilization compare it to 
uniform rates, but the cost of data is a concern. With the increasing availability of data sources 
for VRN recommendations, it is important to assess the profitability of these information 
sources. 
This study evaluates the ex post profitability of VRN prescriptions derived from different 
information sources. Using data from 10 Midwest fields in 2021, we compare nitrogen 
prescriptions using remotely sensed data to those using yield history. A quasi-experimental 
design is used to address non-random treatment assignment. 

Preliminary findings show significant variability in prescription effectiveness across fields. Yield 
history-based prescriptions resulted in statistically higher gross margins on 1 of 7 fields (57%), 
while NDVI-based prescriptions did so on 1 of 7 fields (14%). 
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Introduction 
In agriculture, decisions hinge on real-time updates about dynamic environmental conditions, 
crop status, and crucially, crop prices and input costs. Among the many important tactical 
decisions that farmers face, fertilization holds significant importance, as it represents a major 
production cost for cereal grain crops. Particularly regarding nitrogen fertilizers, numerous 
factors come into play, as nitrogen is a volatile nutrient prone to loss from the root zone and the 
extent of nitrogen loss can vary depending on soil type and weather conditions. 
In the past, nitrogen fertilizer recommendations relied on the concept of yield potential, 
representing the anticipated yield attainable by farmers under ideal conditions. Calculations for 
yield-maximizing nitrogen rates were straightforward, involving the multiplication of yield 
potential by a fixed parameter. However, these recommendations were primarily based on the 
average yield of a field, overlooking within-field variability. Furthermore, they remained static 
over time, as the underlying information used to formulate recommendations seldom changed. 
While variable rate nitrogen prescription based on grid soil testing attempted to address within-
field variability, past research has highlighted various technical and economic limitations 
associated with this approach, which requires many costly soil test samples (Whelan et al., 
1996; Fleming et al., 2000). 
The spread of information technology has made obtaining quantitative information about fields, 
crops, and the environment more accessible, providing a wealth of data to guide fertilizer 
recommendations. This technological advancement enables us to develop nitrogen 
recommendations using detailed data at fine spatial and temporal resolutions, down to the sub-
field level. By applying tailored nitrogen rates that align with the spatial variability and crop 
requirements within a field, variable rate nitrogen (VRN) application can enhance crop 
productivity, improve nitrogen use efficiency, and ultimately increase profitability for farmers. 
A diverse array of information sources is now available for this purpose. For instance, current 
season crop growth information such as normalized difference vegetation index (NDVI) or 
chlorophyll index (CI), both based on data collected remotely using sensors, offers real-time 
insights for fertilization (Holland and Schepers, 2010; Jin et al., 2017; Solie et al., 2012). By 
contrast, yield maps enable the analysis of within-field yield variability across multiple years 
(Khakbazan et al., 2021; Laboski et al., 2012; Paz et al., 1999). These new types of information 
enable VRN prescriptions that are conditioned upon just-in-time weather and historic variability 
in ways that were heretofore impossible. 
However, information costs money.  Thus far, there is a dearth of comparative studies 
evaluating the returns to different types of information available to develop nitrogen fertilizer 
recommendations. Various nitrogen prescription methods have been suggested, but there is no 
consensus on which prescription algorithm and which information set is the most profitable. 
Each type of information can contribute to raising yields, reducing excessive inputs, or doing 
both simultaneously.  How well they accomplish these goals may vary across different types of 
information. The cost of acquiring information is not always aligned with its effectiveness, and 
costs can vary greatly across information sources. Understanding the payoff associated with 
each type of information is a key step toward evaluating the cost effectiveness of information 
investments. As highlighted by Schimmelpfennig (2016), farmers who adopt site-specific 
technology allocate approximately 32% more of their budget to machinery investments 
compared to those who do not and returns to those investments are driven by information. 
This study contributes to the existing literature on the profitability of variable-rate nitrogen 
application and the value of agricultural information. While numerous studies have investigated 
how different nitrogen prescription methods effectively increase crop yield compared to uniform 
rate application (Park et al., 2024; Khakbazan et al., 2021; Khanna, 2001; Babcock and 
Pautsch, 1998), little attention has been paid to determining which prescription method is the 
most profitable.  



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

3 

Studies comparing prescription methods based on different sources of information are limited, 
and there is no consensus on which information source most effectively increases farm profit.  
Among studies that have compared nitrogen prescriptions based on different sources of 
information, a common approach is to estimate the yield response function to nitrogen and 
assess how well agricultural information explains the optimal nitrogen rate (Hurley et al., 2001; 
Schmidt et al., 2011). This method has the advantage that it does not require prescriptions to be 
made from the information, and fields do not need to be treated with different prescriptions. 
However, this method requires a long span of data to validate the yield response function. 
Alternatively, by assigning different prescriptions, the treatment effect of prescribing nitrogen 
from each information source can be estimated (Stefanini et al., 2019). Schimmelpfennig and 
Ebel (2016) utilized survey data and found that soil maps contribute to production cost savings, 
but they did not consider the possible revenue change from yield change. 
In this paper, we examine the ex post profitability of nitrogen prescriptions based on different 
sources of information. Using yield maps and nitrogen prescriptions from 10 fields in the 
Midwest in 2021, we compare a prescription based on remotely sensed data to a prescription 
based on yield history. Since the treatments were not randomly assigned, we employ a quasi-
experimental design to disentangle the effects of the two different treatments derived from two 
different sources of information. After comparing the profitability of various information sources, 
we delve deeper into understanding the factors that contribute to the effectiveness of nitrogen 
prescription.   

Data 
We evaluate nitrogen fertilizer recommendations using corn yield data from ten fields located on 
two farms in Michigan and one in Indiana in 2021.  Each field was divided into a grid, where the 
width of each cell was set equal to the width of the fertilizer applicator. Each grid cell serves as 
an observation unit for this analysis, with a total of 4,945 samples examined. 
The nitrogen rate was varied solely for the second side-dress nitrogen application. Nitrogen 
fertilizers are typically applied to corn at multiple times during the year, including prior to planting, 
at planting, and one or more times at side-dress when the crop is growing. In this on-farm 
experiment, the participating farmers maintained uniform nitrogen rates for preplant and first 
side-dress applications but adjusted the nitrogen rate for the second side-dress application 
based on the given prescription.  
The gross margin calculations use 2021 USDA corn prices from two states: Michigan corn grain 
price of $5.35/bu and Indiana corn grain price of $5.43/bu (USDA, 2023a; 2023b). The nitrogen 
fertilizer price of $0.57/lb is from the USDA Agricultural Marketing Service Illinois Production 
Cost Report (USDA, 2022). As the side-dress nitrogen is applied in the form of 28% liquid 
nitrogen fertilizer, we calculate the price of nitrogen by dividing the liquid nitrogen price by 0.28, 
under the assumption that 28% of the liquid nitrogen price corresponds to the nitrogen content.  
We use daily weather data at a resolution of 800m from Parameter-elevation Relationships on 
Independent Slopes Model (PRISM) to construct variables for growing degree days1 (GDD), 
total precipitation, and number of days with maximum temperature below 15℃ for the duration 
of the growing season, spanning from April to September.  
Descriptive statistics of the data used in the analysis are presented in Table 1. For the entire 
sample, the average corn yield is 190 bu/ac and the average gross margin from corn over the 
cost of the second side-dress nitrogen application is 996 $/ac. 
 

 
 
1  𝐺𝐷𝐷 = ∑𝑀𝑎𝑥(𝐴𝑣𝑔. 𝑇𝑒𝑚𝑝 − 10℃, 0) 
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Table 1 Descriptive statistics for key variable rate nitrogen profitability variables,  
10 corn fields, Michigan and Indiana, 2021 (n=4,945). 

Variable Average 
(Std. Dev.) Min Max 

Gross margin ($/ac) 996 
(260) 27.52 1433.08 

Yield (bu/ac) 190 
(50) 5.14 275.74 

N rate (lb/ac) 42.56 
(34.01) 0 106.90 

NDVI level 
(Low=1, Med=2, High=3) 

2.20 
(0.70) 1 3 

YH level 
(Low=1, Med=2, High=3) 

1.89 
(0.54) 1 3 

Growing degree days (Apr-Sep) 1583 
(71) 1509 1706 

Total precipitation (Apr-Sep) 637 
(56) 578 737 

Max temp below 15℃ days (Apr-Sep) 40 
(0.96) 38 43 

 

Nitrogen prescriptions 
Each farmer provided their historical yield map and nitrogen application map. The YH 
recommendation algorithm was based on yield history data.  Remote sensing imagery 
(transformed into the Normalized Differential Vegetation Index; NDVI) constituted the data set 
for the NDVI recommendation algorithm and was collected before the second side-dressing. 
Both the historical yield (YH) map and the remote sensing imagery (NDVI) were classified into 
three levels: high, medium, and low, using Iso Unsupervised Classification in ArcGIS.  
Then, both YH and the NDVI were integrated into the SALUS crop growth model (Basso et al., 
2006) together to generate a nitrogen prescription for each field. Three nitrogen fertilizer levels 
(high, medium, low) were prescribed for each field as described in Basso et al., (2011, 2016). 
The specific rate of nitrogen at each level varies by field.  
From the SALUS model, a single set of recommendations was generated, which, depending on 
instances, aligned with either a reliance on NDVI or YH. The prescribed nitrogen level aligned 
with the NDVI level when there is small discrepancy between NDVI and YH levels. Conversely, 
the prescription is aligned with the YH level in cases when 1) the NDVI level is high but YH is 
low, 2) the NDVI level is medium but YH is low with large historical variation, and 3) the NDVI is 
low but YH is medium with small variation across time. A full description of the nitrogen 
prescription algorithm for each possible combinations of NDVI and YH levels appears in 
Appendix. 
 

Methods 
In order to statistically estimate an unbiased treatment effect (e.g., from different information 
sets), the treatment assignment must either be randomized or exhibit enough variation to 
establish conditional independence of treatment assignment. However, in the current dataset, 
only one prescription has been applied to all observations, making it impossible to ensure the 
necessary variation. To overcome this challenge, we propose a quasi-experiment leveraging the 
unique characteristic of the prescription algorithm, which utilizes two sets of information, NDVI 
and YH together. 
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Creation of pseudo-treatment variables 
As all the nitrogen prescriptions given to farmers are based on the combination of NDVI and YH, 
we generate treatment variables for the NDVI and YH methods by classifying each cell 
according to the nitrogen rate it received. For each treatment, we create a variable equal to 1 if 
the rate is prescribed following that information. For example, if the cell received the high 
nitrogen rate and its NDVI level is also high, the value of the NDVI treatment variable for that 
cell is 1. However, if the cell received the low nitrogen rate and its YH is low, but its NDVI level 
is high, the value of the NDVI treatment variable for that cell is 0 while the value of the YH 
treatment variable is 1.  
Figure 2 describes two examples of how the pseudo-treatment variables are generated. Cell A, 
which has high NDVI and medium YH, received the high nitrogen rate. So, its NDVI treatment 
variable is 1 because its nitrogen recommendation is consistent with NDVI information, whereas 
its YH treatment variable is 0 because YH alone would not have given a high nitrogen 
recommendation. On the other hand, Cell B received the medium nitrogen rate, and both of its 
NDVI and YH levels are medium. Therefore, the NDVI and YH treatment variables are both 1. 
 

 
Figure 1 Example of pseudo-treatment variable 

 

Estimation strategies 
Although we can generate pseudo-treatment variables, their non-random assignment calls for 
further consideration. We propose two estimation strategies: linear regression and spatial 
regression discontinuity. Given that the gross margin is closely related to applied nitrogen rate, 
site characteristics, and weather conditions, the proposed estimation strategies control for the 
effects other than the choice of information utilized for prescription and allows us to examine the 
treatment effect while holding all other factors equal. Linear regression incorporates covariates 
to capture non-treatment effects on gross margin, while spatial discontinuity design leverages 
the fact that contiguous samples can be assumed to have similar characteristics. 
 
Linear regression 

Assuming that the relationship between the gross margin and the treatment variables is linear, 
we can estimate the effect of each treatment by linear regression. The profitability of each 
treatment is estimated with the following equation. 
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(5) 
The dependent variable is the gross margin of corn revenue minus the cost of nitrogen fertilizer. 
NDVIi and YHi indicate the NDVI treatment and YH treatment respectively. The effects of 
prescription methods are interacted with year indicator variable (YEARt), representing the 
differential impact of the prescription methods contingent on the weather patterns of each year. 
Because our data includes only the year 2021, we omit the interaction with year in the 
estimation regression. Site characti is a vector of all variables that are specific to each cell, such 
as slope, NDVI and YH level. Weatherit is a vector of weather conditions specific to cell and year 
that is comprised of growing degree days and total precipitation during the growing season.  
Fieldi represents a vector of field fixed effect controlling for all the field specific effect such as 
farmer, previously planted crop, and location. The effect of the NDVI treatment and YH 
treatment are represented by the coefficients β1 and β2 respectively in Equation (5).  
This method is characterized by its ease of implementation, its capacity to control variables that 
may be correlated with the gross margin, and its facilitation of statistical inference. Also, despite 
the simplicity of estimation, it does not show any statistical differences from Bayesian regression 
or random forest regression (Paccioretti et al., 2021). Nonetheless, because treatments were 
not randomly assigned, the estimated treatment effect may be biased. The nitrogen prescription 
algorithm applied in this experiment tends to choose the NDVI treatment when the NDVI level is 
high, so the NDVI method is more likely to be assigned to a cell with higher level of YH, 
whereas the YH method is more likely to be assigned to a cell with lower level of NDVI. When 
we compare the mean of NDVI and YH level of two groups in Table 2, one group treated with 
the NDVI method and one treated with the YH method, the results of the unpaired t-test suggest 
that the NDVI and YH variables of the two methods are statistically distinguishable at a 
significance level of less than 1%. 
 

Table 2 Mean values of key variables, by information treatment 

 Treated with NDVI 
(n=4,204) 

Treated with YH 
(n=3,194) 

Gross margin ($/ac) 1018 984 
Yield (bu/ac) 194 187 
N rate (lb/ac) 46.16 36.85 
NDVI level 2.24 1.95 
YH level 1.97 1.83 

 
Spatial discontinuity design 

This method compares the gross margin response of two adjacent grid cells under the 
assumption that all site characteristics, including YH and NDVI, are virtually identical except for 
the information used to make the nitrogen prescription. Specifically, we focus on comparing 
pairs of cells that received the same nitrogen rate. By doing so, we isolate the impact of 
information choice on gross margin, as any difference observed between adjacent cells with 
different information choices can be attributed to the information used for nitrogen prescription. 
This approach bears resemblance to the spatial regression discontinuity design, which also 
involves the consideration of spatial factors. However, we cannot classify this method as the 
spatial regression discontinuity design because the spatial factor alone in this approach does 
not dictate the treatment assignment. Rather, the spatial component is only used as the basis 
for assuming similarity between two adjacent cells. 
We consider “rook” neighbors, which include only grid cells that share a side. Cell i is defined as 
a YH treated unit and cell j is defined as an NDVI treated unit if the following conditions are met: 
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1) they have received the same nitrogen rate, 2) cell i is prescribed following YH level, 3) cell j is 
prescribed following NDVI level, and 4) the YH and NDVI levels of cells i and j do not match. We 
then compare the means of two samples using a paired t-test by field.  
This method addresses the limitations of previous methods that there may be unobserved 
heterogeneity and the treatment assignment is not random, by assuming that closely located 
cells have only marginal differences in site characteristics, and that the treatment assignment is 
independent of other cell characteristics. 
 

Results 

Linear regression results 
In the estimated model for the linear regression method, the outcome variable is the gross 
margin ($/ac) and we control for variables that assign the treatment, NDVI and YH levels, as 
well as field fixed effect, in-season growing degree days, total precipitation, and site 
characteristics; along with available water storage, soil organic carbon, and the national 
commodity crop productivity index (NCCPI) of corn (as a measure of site soil quality).  
The results (Table 3) indicate that the effects of each method are heterogenous across fields. 
The magnitude as well as the signs of the coefficients differ substantially. The prescription 
based on NDVI outperformed the YH in 30% of fields and the YH outperformed NDVI in 40% of 
fields. In 30% of cases, they were not statistically different at 90% confidence level. 
 
 

Table 3 Linear Regression Estimated Coefficients and their p-values of Treatment Variables by Prescription 

Variable Farm Field 

Coefficient 
(clustered standard error) NDVI – YH 

(clustered std. err.) Treat 1 (NDVI) Treat 2 (YH) 

𝑡𝑟𝑒𝑎𝑡! 

MI_A 

1 
(Baseline) 

12  
(22) 

-22 
(6) 

34 * 
18 

𝑡𝑟𝑒𝑎𝑡! ∗ 
𝐹𝑖𝑒𝑙𝑑	𝐹𝑖𝑥𝑒𝑑	𝐸𝑓𝑓𝑒𝑐𝑡 

2 190 *** 
(24) 

-13 ** 
(6) 

204 *** 
(20) 

3 46 
(30) 

119 *** 
(15) 

-74 *** 
(28) 

MI_B 

1 -95 *** 
(29) 

-37 *** 
(15) 

-58 ** 
(30) 

2 21 
(21) 

21 *** 
(7) 

1 
(21) 

3 -47 
(43) 

-59 *** 
(9) 

12 
(37) 

4 -113 *** 
(37) 

-46 *** 
(10) 

-67 ** 
(32) 

IN_B 

1 -118 *** 
(34) 

-5 
(9) 

-114 *** 
(29) 

2 16 
(38) 

-28 *** 
(10) 

43 
(30) 

3 37 
(28) 

-49 *** 
(11) 

86 *** 
(20) 

***, **, ** indicate significance level at less than 1%, 5%, and 10% respectively 

 

Spatial discontinuity design results 
We sample adjacent pairs that received the same nitrogen rate while the information source 
used for the prescription differs. A total of 501 pairs satisfied the conditions to be compared, 
although the number of pairs varies across fields. Four fields had fewer than 30 pairs, raising 
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concerns about the statistical power of the analysis and the generalizability of the findings, 
hence underscoring the need for caution when interpreting the results.  
The results indicate that NDVI outperformed YH in one field, while YH outperformed NDVI in 
four fields. In five fields (including all fields having fewer than 30 pairs), the difference between 
NDVI and YH is not statistically different from zero. 

Table 4: Average yields by information sources and paired t-test results  
Field 

(number of samples) 
Average yield (bu/ac) NDVI – YH 

(std. err.) NDVI YH 

MI_A 

1 
(163) 138 142 -4 ** 

(2) 
2 

(12) 159 166 -7 
(12) 

3 
(34) 195 209 -14 *** 

(4) 

MI_B 

1 
(13) 266 267 -1 

(2) 
2 

(82) 246 250 -4 *** 

(1) 
3 

(4) 257 256 1 
(4) 

4 
(65) 212 216 -4 ** 

(1) 

IN_A 

1 
(67) 217 213 4 *** 

(2) 
2 

(54) 215 213 2 
(2) 

3 
(7) 211 211 0 

(10) 
***, **, ** indicate significance level at less than 1%, 5%, and 10% respectively. 

 
Linear regression and spatial discontinuity design yield consistent results in 70% of the fields. 
Among the fields with consistent results, YH outperformed NDVI in 57% (4 out of 7) of fields, 
with at least one instance showing statistical significance. Conversely, NDVI outperformed YH in 
14% (1 out of 7) of fields, with at least one instance demonstrating statistical significance. 
 

Table 5: Identified outperforming information by estimation methods 

Field Outperforming information 
Regression Spatial discontinuity 

MI_A 
1 NDVI *** YH ** 
2 NDVI *** YH 
3 YH *** YH *** 

MI_B 

1 YH ** YH 
2 YH YH *** 
3 NDVI NDVI 
4 YH * YH ** 

IN_A 
1 YH *** NDVI *** 
2 NDVI NDVI 
3 NDVI *** NDVI 

***, **, ** indicate significance level at less than 1%, 5%, and 10% respectively. 

 

Conclusion 
Variable rate nitrogen (VRN) application is widely recognized as a promising method for 
reducing excess nitrogen fertilizer and mitigating environmental pollution. However, the 
challenges associated with accurately calculating prescription rates persist. While several 
methods have been proposed for N rate prescription, a comparative analysis of their profitability 
remains scarce in the literature. In response to this gap, we examine and compare the 
profitability of different nitrogen fertilizer prescription methods using on-farm field data. 
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To accomplish this objective, we focus on two distinct information sets: early season crop vigor 
(NDVI) and yield history (YH). Each prescription utilizes a different information in that the 
information is from a different point of time. NDVI reflects the crop condition early in the current 
season, while YH aggregates past yield data. As the yield effect of applied nitrogen depends 
upon weather, the profitability of each treatment may differ, which motivates this study of ex-
post profitability effects of each method.  
This paper contributes to the literature in two ways. Firstly, we compare the effects of different 
VRN prescriptions on crop yields, a topic that has been relatively unexplored in existing 
research. By doing so, it provides insights into the comparative effectiveness and efficiency of 
information sources used for VRN prescriptions. Secondly, we develop a quasi-experiment 
method, using the data from an on-farm experiment and propose two novel analytical methods: 
linear regression and spatial discontinuity. These methods are designed to be easily 
expandable and replicable, allowing other researchers to apply and build upon our approach in 
diverse agricultural contexts.  
Our analysis reveals that the effectiveness of different nitrogen fertilizer prescription methods 
varies considerably depending on the field. Specifically, we found that in the year 2021, the 
prescription based solely on YH led to the highest gross margin in four of seven fields (57%), 
while the NDVI-based prescription did so on one of seven fields (14%). 
The inconclusive results between VRN prescription information sources based on gross margin 
evaluation suggest two avenues for future research.  First, from a private profitability 
perspective, information costs should be incorporated into the analysis, because the gross 
margin over fertilizer costs is insufficient alone.  Second, from a public welfare perspective, an 
improved analysis should account for the information source effect on excess N that is not taken 
up by the crop.  This would be a first step toward determining whether excess N can play a role 
in identifying the preferred information source for nitrogen fertilization. 
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Appendix 
Table 4 Nitrogen prescription algorithm 

Assignment criteria Prescribed level of N Chosen information NDVI YH, Stability 

High 
High High - 

Medium High NDVI 
Low Low YH 

Medium 

High Medium NDVI 
Medium Medium - 

Low Stable Medium NDVI 
Unstable Low YH 

Low 

High Low NDVI 

Medium Stable Medium YH 
Unstable Low NDVI 

Low Low - 

 


