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Abstract 
Access to post-harvest residue coverage information is crucial for agricultural management and 
soil conservation. The purpose of this study was to present a new approach based on an 
ensemble at the decision level for mapping the corn residue. To this end, a set of Landsat 8 and 
Sentinel-1 imagery, and field data including the Residue Cover Fraction (RCF) of corn (149 
samples), were used. Firstly, a map of common spectral indices for RCF modeling was prepared 
based on the spectral bands. Then, the efficiency of each index in RCF mapping was evaluated. 
Secondly, the efficiency of three machine learning algorithms including Artificial Neural Networks 
(ANN), Random Forest (RF), and Support Vector Regression (SVR) was evaluated and compared 
with each other. Furthermore, to increase the accuracy of RCF mapping, different algorithm 
results were combined based on their modeling error, which is called the ensemble approach. 
The results showed that the coefficient of determination (R) between the Broadband spectral 
Angle Index (BAI) and RCF was 0.63, which was higher than other spectral indices. The R(RMSE) 
between the actual and modeled RCF based on ANN, RF, and SVR algorithms using spectral 
indices were 0.83 (3.89), 0.86(3.25), and 0.76 (4.56), respectively. By applying the ensemble 
approach, the error of RCF mapping was reduced by 0.85% compared to the results of the best 
machine learning algorithm. The results showed that the ensemble approach improved the 
accuracy of the RCF mapping significantly. 
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Introduction 
The health of the soil can be harmed by agricultural practices like plowing and tillage, which 
involves heavy machinery. This damage increases the soil's susceptibility to rain-induced soil 
erosion, which results in the loss of the topsoil layer that is vital to crop growth (Liao et al. 2022). 
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The eroding soil frequently finds its way into rivers, where it contaminates the water with 
substances like phosphorous (Maruffi et al. 2022). Deteriorating soil quality also causes the 
release of precipitated carbon, which raises atmospheric carbon dioxide concentrations and fuels 
climate change. Keeping post-harvest vegetation on the soil surface is a practical and efficient 
way to reduce soil erosion and increase soil productivity (Han et al. 2023). 
Crop residues are crucial in maintaining soil health as they remain on the field following harvest. 
Crop residue influence the chemical, physical, and biological characteristics of the soil, lowering 
evaporation, improving water permeability, and raising crop production (Turmel et al. 2015). 
Furthermore, by limiting the release of gases like NH3, CO, and SO2 that arise from burning plant 
wastes, their preservation can help lower air pollution (Singh et al. 2020). 
Mapping crop residue is essential for sustainable agricultural goals, including environmental 
health. Broad-scale field trips and sampling are impracticable for traditional approaches; remote 
sensing (RS) techniques, on the other hand, are highly accurate for assessing agricultural 
residues across broad areas (Zheng et al. 2014). Previous research has modelled residue cover 
fraction (RCF) using a variety of satellite images, including Landsat (Hively et al. 2019), Sentinel-
2 (Gao et al. 2022), and RADARSAT (Cai et al. 2019), in addition to a number of RS indices. 
Although these indices have benefits and drawbacks, their efficacy varies according to the 
surrounding circumstances. 
Complex agricultural landscapes frequently challenge single indices, which is why multivariate 
regression techniques like Random Forest Regression (RFR), Support Vector Regression (SVR), 
and Artificial Neural Networks (ANN) are used to improve RCF modeling (Ding et al. 2020). 
However, RCF modeling accuracy can be greatly increased by combining the capabilities of 
several models and indices. This paper offers a new method for mapping corn residue that is 
based on an ensemble at the decision level. 

2. Study area 
Ontario is a key agricultural area in Canada, known for its wide variety of crops and orchards. For 
this research, an area in southern Ontario was chosen, located at 82.5° west and 42.5° north. 
This area predominantly grows corn, wheat, and soybeans (Figure 1). Covering roughly 4324 
km², the region has 1218 km² allocated to corn farming. Given the climate and long winters, most 
crops here are harvested by September. 

 
Figure 1. Geographical location (left) and the land crop classes of the study area (right). 
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3. Data and methods 

3.1. Data 
To evaluate multiple models and datasets in RCF modeling, a set of Landsat 8 and Sentinel-1 
imagery bands and indices, and field data including corn Residue Cover Fraction (RCF) (149 
samples), were used. Additionally, a land cover map created by Agriculture and Agri-Food 
Canada (AAFC) in 2020 (30 m), was used to mask corn from various agricultural products. 
Ground data collection was carried out post-harvest and involved calculating the RCF in the fall 
from multiple corn fields. Corn RCF values were measured at 149 locations for this purpose. A 
Phantom 3 SE drone was utilized to take pictures from each chosen sample site, and camera 
photographs were used in sampling process. At each sampling site, a digital orthophoto produced 
with a spatial resolution of 20 cm while the drone was in the air at a height of 20 m. After that, 
each image's crop residue location was manually digitalized. The RCF was computed for an area 
of 900 m² surrounding each sampling point after the camera images were processed. 

3.2. Methods 
First, based on the satellite bands, a map of spectral indices was created. Then, the AAFC map 
was used to mask these maps to Corn crop fields. Next, the effectiveness of several algorithms 
such as SVM, RFR, and ANN was assessed and contrasted with one another. To further improve 
the accuracy of modeling, the output of various algorithms was integrated based on the modeling 
error. 
3.2.1. Effective Variables 

For RCF modeling, a number of spectral indices have been created in earlier works, including 
STI, DFI, NDVI, NDSVI, NDTI, NDI5, NDI7, 3BI3, and BAI. Backscatter data from the VV and VH 
bands of Sentinel-1 were also utilized (Table 1).  

Table 1. Utilized bands and indices. 
Type Spectral Indices Equation Reference 

Spectral indices 

DFI 100×(1 − OLI7/OLI6)×(OLI4/OLI5) (Bocco et al. 
2014) 

STI OLI6/OLI7 (Van Deventer 
et al. 1997) 

NDSVI (OLI6 − OLI4)/(OLI6 + OLI4) (Qi et al. 2002) 
NDTI (OLI6 − OLI7)/(OLI6 + OLI7) (Van Deventer 

et al. 1997) 

NDI5 (OLI5 − OLI6)/(OLI5 + OLI6) (McNairn and 
Protz 1993) 

NDI7 (OLI5 − OLI7)/(OLI5 + OLI7) (McNairn and 
Protz 1993) 

NDVI (OLI5 − OLI4)/(OLI5 + OLI4) (Ding et al. 
2020) 

3BI3 (OLI7 − OLI4)/(OLI7 + OLI6) (Ding et al. 
2020) 

BAI - (Yue et al. 
2020) 

Backscatter 
bands 

VV - - 
VH - - 

3.2.2. Machine Learning Methods 

The RCF was modeled using multivariate modeling algorithms, namely RFR, SVM, and ANN. All 
reflective band-based spectral indices were employed as independent variables in the first 
strategy. In the second strategy, the modeling process incorporated VV and VH band information 
along with spectral indices derived from reflective bands. The 96 samples of training data were 
used to calibrate each RFR, SVM, and ANN algorithm. Next, utilizing test data (53 samples), the 
effectiveness of each of these algorithms was assessed.  
3.2.3. Decision-based ensemble approach 

Equation (1) used in the proposed strategy to integrate the output of RFR, SVM, and ANN 
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algorithms in order to reduce the error of the modeled RCF based on RS data.  

RCF! =%W"RCF#$%&'(")
*

"+,

 (1) 

Wi denotes the algorithm's degree of importance, n is the number of used algorithms, RCFmodel(i) 
is the fraction of the modeled RCF based on the RS data obtained from the ith algorithm, and RCFf 
is the modeled RCF based on the data obtained by combining the results of different algorithms. 
The ith algorithm's significance is computed using equation (2). 

W" =
RMSE#$%&'(")

∑ RMSE#$%&'(")*
"+,

 (2) 

Equation (2) uses the ith technique to calculate RMSEmodel(i), which is the root mean square error 
of the estimated fraction. An algorithm's impact and significance on the RCF estimate result 
increase with decreasing RMSE. 

4. Results 
According to Table 2, the effectiveness of spectral indices based on reflective bands varied. 
Compared to other spectral indices, the R2 between BAI and the residues was higher at 0.63. The 
R² value between the VV band and the residues was 0.25, and for the VH band, it was 0.29. The 
radar bands were less efficient compared to the spectral indices. 

Table 2. The R2 between the effective variables and residue. 
Effective variables R2 

3BI3 0.46 
NDI5 0.54 
NDI7 0.60 

NDSVI 0.07 
NDTI 0.42 
NDVI 0.43 
STI 0.43 
DFI 0.55 
BAI 0.63 
VV 0.25 
VH 0.29 

The validation data showed that the R2 (RMSE) was 0.83 (3.89), 0.86 (3.25), and 0.76 (4.56), 
between the actual and modeled RCF based on ANN, RFR, and SVR algorithms, respectively 
(Figure 2). According to the findings, the RFR algorithm exhibited the highest level of accuracy. 

ANN RFR SVR 

   
Figure 2. R2 and RMSE between actual and model RCF based on validation data. 

When spectral indices and radar bands considered together as dependent variables, the R2 
(RMSE) between the real and modeled values of the corn RCF based on ANN, RFR, and SVR 
algorithms was 0.85 (3.45), 0.89 (2.68), and 0.80 (4.02%).  
According to the ensemble strategy, the R2 (RMSE) between the modeled and actual RCF was 
0.92 (1.78) % (Figure 3). In comparison to the outcomes of the best ML algorithm, the model error 
based on the suggested technique was decreased by 0.90 %. 
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Figure 3. R2 and RMSE between the actual and modeled RCF based on the proposed strategy. ORCF is the observed RCF 

and MRCF is the modeled RCF. 

The RCF map created using the suggested approach revealed that the residue's spatial 
distribution differed throughout the research region (Figure 4). The RCF ranged from 0% to 62%. 
The study area's eastern farms had a lower RCF than its western farms. The highest residue 
values were found in the research area's northwest corn fields. The research area's average RCF 
was 18.2%. In the study area, the RCF's standard deviation (Sd) was 8.3%. 

 
Figure 4. Corn RCF map for the study area. 

5. Conclusion 
Crop residue mapping is essential for sustainable agriculture as it aids in managing soil health, 
reducing erosion, and enhancing nutrient cycling. RS data is particularly valuable for this purpose 
due to its ability to provide extensive, timely, and accurate coverage of large agricultural areas. 
Nevertheless, a number of variables, such as (1) the dependent variables used in the modeling 
process, (2) the calibration and validation data quality, and (3) the algorithms used to build the 
appropriate model between the effective variables and the RCF, affect how accurately different 
crops are mapped to the RCF using satellite data (Ding et al. 2020; Yue et al. 2020). The impact 
of dependent variables and the algorithms utilized in the RCF modeling procedure examined in 
this study. A new approach based on the ensemble of several ML algorithms' results at the 
decision level was created to increase the accuracy of RCF modeling and mapping. Out of all the 
ML methods, RFR accuracy outperformed the others. The accuracy of RCF modeling improved 
with the ensemble of outcomes from several ML algorithms at the decision level. It is 
recommended that the effectiveness of deep learning algorithms in RCF modeling be assessed 
in subsequent research. 
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