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Abstract 
Predicting saccharine and bioenergy feedstocks in sugarcane enables growers and industries to 
determine the precise time and location for harvesting a better-quality product in the field. On one 
hand, Brix, Purity, and total recoverable sugars (TRS) can provide meaningful and reliable 
indicators of high-quality raw materials for first-generation (1 G) bioethanol. Conversely, 
Cellulose, Hemicellulose, and Lignin are the primary constituents of straw, directly contributing to 
second-generation (2 G) bioethanol. However, analyzing these materials in the laboratory is a 
time-consuming and non-scalable task. Therefore, we propose an approach based on a multi-
sensor framework, which includes multispectral unmanned aerial vehicle (UAV) imagery, thermal, 
photosynthetic active radiation (PAR), and chlorophyll fluorescence (ChlF) data, along with 
machine learning (ML) algorithms namely random forest (RF), multiple linear regression (MLR), 
decision tree (DT), and support vector machine (SVM), to develop a non-invasive and predictive 
framework for mapping sugarcane feedstocks. We collected samples of stalks and leaves/straw 
during the maturity stage while simultaneously collecting remote sensing data. The ML models 
played a crucial role in predicting 1 G (R2 = 0.88–0.93) and 2 G (R2 = 0.56–0.82) feedstocks. Our 
study marks a significant advancement in the industrial-scale prediction of sugarcane feedstocks, 
providing stakeholders with invaluable prescriptive harvesting strategies for both primary products 
and by-products. 
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Introduction 
Sugarcane (Saccharum spp.) is cultivated commercially across more than 100 countries, yielding 
an annual production exceeding 1.91 billion tons (FAOSTAT 2020). As the leading biomass crop 
globally, it stands as the principal source of sugar, contributing to over 80% of the total global 
sugar production (FAOSTAT 2020). Furthermore, sugarcane serves as a critical supplier for 
bioenergy and bioethanol, owing to its substantial cellulose content (Palliprath et al. 2023; Sica et 
al. 2023). Sugar-energy mills typically harvest and process sugarcane stalks to extract juice, 
which is used to produce sugar and first-generation (1 G) bioethanol (Freitas et al. 2021). As a 
result, residual bagasse generated during milling is usually incinerated and serves as a primary 
raw material for second-generation (2 G) bioethanol (Chandel et al. 2019; Mustafa et al. 2023; 
Padella et al. 2019). This strategic integration ensures a sustainable bioethanol production 
pathway while aligning with broader objectives encapsulated in the Sustainable Development 
Goals (SDGs). These efforts specifically contribute to SDG#7 (Affordable and Clean Energy), 
SDG#9 (Industry, Innovation, and Infrastructure), SDG#12 (Responsible Consumption and 
Production), and SDG#13 (Climate Action). 
In 1 G bioethanol production, the efficiency of the harvested product depends on the mechanical 
harvest schedule. Harvesting typically begins when crops reach maturity, which is characterized 
by the highest sugar content. This sugar content can be measured through Brix, Purity, and total 
recoverable sugar (TRS). However, field teams usually estimate these feedstocks. While this 
approach has proven to be effective, it is also costly, labor-intensive, and time-consuming. 
Therefore, integrating remote sensing technology serves as a feasible alternative to the traditional 
sampling methodology.  
The adoption of mechanical harvesting stands as a pivotal element in sustaining an intensive 
sugarcane production system. Nevertheless, this method yields a significant agri-residue in the 
form of straw, amounting to 10–20 t ha−1 year−1 (Bilatto et al. 2020; Freitas et al. 2021; Michelin 
et al. 2023). Straw is mainly composed of dry leaves (60%) and green tops (40%) after the 
sugarcane stalks are harvested (Aguiar et al. 2021). Additionally, straw is basically composed of 
Cellulose, Hemicellulose and Lignin in stoichiometric proportions of 40, 28 and 21% respectively 
(Pereira et al. 2015). In particular, Cellulose is the polymer of interest in the production of 2 G 
bioethanol by enzymatic hydrolysis. Therefore, quantifying it, spatially and temporally, is crucial 
to the success of collecting raw materials from the production field and industrial processing. 
Consequently, there is a convincing need for new studies that specifically address the real-time 
estimation of those 2 G feedstocks concentrations in sugarcane straw during the crop growing 
period using remote sensing. 
Therefore, we conducted a comprehensive field study to evaluate whether an integrated sensing 
and ML algorithms can be useful for predicting 1 G (Brix, Purity, and TRS) and 2 G (Cellulose, 
Hemicellulose, and Lignin) sugarcane feedstocks during the maturity stage, presenting a 
significant opportunity to strengthen and refine the industry process. 

Material and Methods 
Site Study 
The study was conducted in a commercial sugarcane field in the city of Napoleonville, Louisiana, 
USA. The sugarcane cultivar L 01–299 was planted in September 2021 and harvested for the first 
time in October 2022; hence, our research was conducted on the first ratoon, from August-
October 2023. We started the data collection at the maturity stage by sampling the stalks, tops, 
and using sensors. For each data collection we defined 22 sample plots regularly distributed 
throughout the field. Each plot had equal dimension of 10 × 10 m. For both 1 G analysis (Brix, 
Purity, and TRS) and 2 G analysis (Cellulose, Hemicellulose, and Lignin), the data collection was 
performed five times during the maturity stage with an interval of ∼15 days. Data collection for 
both 1 G and 2 G involved sampling 10 millable stalks and green top leaves (∼1 kg of fresh 
material), respectively, on five different dates at each sample plot. 
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Laboratory Analysis 
The analysis of 1 G (Brix, Purity, and TRS) and 2 G (Cellulose, Hemicellulose, and Lignin) 
feedstocks was conducted as part of routine procedures in dedicated sugar and forage 
laboratories, respectively. These analyses employed wet chemistry methods. For the 1 G 
analysis, samples comprising 10 stalks each were individually analyzed, adhering to the 
methodology prescribed by Legendre (1992). While for the 2 G analysis, green top leaves and 
straw samples were processed through a sequential procedure involving neutral detergent fiber 
(NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL), as outlined by the 
methodology established by Goering (1970). 
Multi-Sensor Framework and Data Collection 
The multi-sensor framework was composed of aerial and proximal sensors. For the aerial sensor 
we used a multi-rotor UAV (DJI Matrice 300 RTK, Shenzhen, China) as remote sensing platform 
equipped with a multispectral camera (MicaSense RedEdge-MX, MicaSense Inc., Seattle, WA, 
USA). For the proximal sensors we used on-the-go sensors. For chlorophyll fluorescence (ChlF) 
we used an active sensor (Crop Circle ACS-527, Holland Scientific, Lincoln, NE, USA). Finally, 
we used a multi-parameter sensor (Crop Circle DAS43X, Holland Scientific, Lincoln, NE, USA) to 
quantify air temperature, canopy temperature, and incoming and reflected photosynthetic active 
radiation (PAR). For our analysis, we subtracted air temperature from canopy temperature to 
generate delta temperature (DTemp); and divided reflected PAR by incoming PAR to generate 
fractional PAR (fPAR). To better response plant properties, we used a chlorophyll concentration 
meter (MC-100, Apogee Instruments Inc., Logan, UT, USA) for soil plant analysis development 
(SPAD) analysis. Three plants were selected in each sample plot for SPAD readings. The 
readings were performed in the top visible dewlap (TVD) leaves. 
Data Analysis 
The dataset was randomly split into train and test subsets in the proportion of 70% (n = 77) and 
30% (n = 33), respectively. In this study, we used 4 ML algorithms to perform the predictive models 
namely ML, RF, DT, and SVM. The assessment of models precise and accuracy were conducted 
based on key metrics, namely the coefficient of determination (R²), mean absolute error (MAE), 
and root mean square error (RMSE), applied to the test dataset. 

Results 
The performance results of all models across different feedstocks are systematically presented in 
Table 1, encompassing precision (R2) and accuracy metrics (MAE and RMSE). All the models 
were executed using all the available features, and notably, each exhibited commendable 
performance across diverse feedstocks. However, apparent enhancements in predictive 
capabilities, justifying emphasis, were observed in the case of MLR, RF, and DT. Despite its 
simplicity in statistical complexity, MLR demonstrated a slightly superior performance in predicting 
Brix, exhibiting an approximately 6% enhancement in accuracy. Conversely, the DT model 
produced superior results for Purity, excelling in both precision and accuracy metrics. Noteworthy 
is the superior prediction of 1 G feedstock TRS, with RF better, particularly in terms of MAE. 
Similarly, Cellulose feedstock prediction experienced improvement, although moderated, with the 
implementation of the RF algorithm. In contrast, the DT model emerged as the optimal choice for 
Hemicellulose and Lignin prediction, achieving superior results, particularly in the context of 2 G 
feedstock. Conversely, despite slight differences, the SVM exhibited no comparable proficiency 
in representing any feedstock, lagging behind the others predictive models. This underscores the 
importance of considering the dataset trend to determine the most suitable algorithm. 
To enhance the illustration of the models' performance, Figure 1 provides a visual comparison of 
R2, MAE, and RMSE values derived from the test dataset for each feedstock. Generally, the 1 G 
models demonstrated a slight tendency towards over and underestimation in comparison to their 
2 G feedstocks. Concerning 2 G, the Cellulose model exhibited commendable performance for 
low and medium values; however, for higher values, the models' trend began to underestimate.
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Table 1. Machine learning models performance for the 
sugarcane feedstocks. 
ML Algorithm Feedstock R2 MAE RMSE 

MLR 

Brix 0.88 0.27 0.33 
Purity 0.90 1.27 1.54 
TRS 0.93 3.42 4.15 
Cellulose 0.37 0.80 0.96 
Hemicellulose 0.73 0.79 0.99 
Lignin 0.78 0.30 0.41 

RF 

Brix 0.87 0.29 0.35 
Purity 0.90 1.26 1.52 
TRS 0.93 3.23 4.17 
Cellulose 0.56 0.70 0.81 
Hemicellulose 0.81 0.68 0.87 
Lignin 0.77 0.32 0.43 

DT 

Brix 0.88 0.27 0.35 
Purity 0.91 1.20 1.48 
TRS 0.92 3.92 4.78 
Cellulose 0.48 0.68 0.86 
Hemicellulose 0.82 0.69 0.84 
Lignin 0.79 0.31 0.40 

SVM 

Brix 0.81 0.35 0.41 
Purity 0.89 1.31 1.59 
TRS 0.93 3.72 4.37 
Cellulose 0.54 0.75 0.84 
Hemicellulose 0.78 0.76 0.91 
Lignin 0.77 0.31 0.41 

 
Figure 1. Scatterplots for the bests ML models performance in 
predicting the 1 G and 2 G feedstocks. Blue points merge from 
light to dark blue, representing the low and high values, 
respectively.

Conclusion 
This study introduces a valuable methodology wherein ML algorithms are applied to remote 
sensing data as features to construct predictive models for 1 G and 2 G sugarcane feedstocks. 
The results obtained are robust, affirming the feasibility of predicting both types of feedstocks. 
Particularly, TRS exhibited enhanced predictability in relation to 1 G feedstock, while 
Hemicellulose demonstrated superior performance for 2 G. This information is invaluable for 
researchers and specialists, providing practical insights into deploying ML algorithms for the 
accurate prediction of sugarcane feedstocks. The study highlights variations in the improvement 
rate of prediction performance in ML algorithms, emphasizing the importance of adapting the 
approach according to the characteristics of the specific ML algorithm used. The outcomes of this 
work offer timely and remote prediction results for sugarcane feedstock quality. These findings 
can serve as a foundation for further research and advisory activities, enabling them to optimize 
farm management strategies for sugarcane. This, in turn, contributes to the development of more 
agricultural systems by enhancing the efficiency and precision of feedstock predictions.  
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