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ABSTRACT 

 

The practical way to generate a reference path in path tracking is to follow an 

adjacent swath. However, if the adjacent swath contains sharp turnings, the 

reference path will eventually contain sharper turn than the tractor is able to 

follow. This occurs especially in the corner of a field plot when the field is driven 

around. 

In the headland, the objective is to minimize the time to reach the next swath. 

The commonly known method to generate the shortest path between two arbitrary 

positions is to use Dubins’ Curves. The Dubins’ Curves consist of curves with 

minimum turning radius and line segments connected together. The problem is 

that at the junction point of the path, the vehicle would have to either stop or turn 

wheels infinitely fast, which is not practical. Another approach is to use 

mathematical optimization methods to calculate the shortest path between two 

positions. Constraints are met, but the computational cost is high. 

To overcome the problems above, a Spiral Connection method is proposed in 

the paper. The Spiral Connection method meets the constraints of the 

mechatronical steering system. If the steering rate is limited and tractor curvature 

is changed from the other extreme position to another, the tractor drives along a 

spiral. The Dubins’ Curves method is modified to support spirals between curves 

and lines. Furthermore, in adjacent swath tracking the Spiral Connection method 

is used to limit the curvature of the desired path. 

With the proposed method, the desired path is always feasible with respect to 

the constraints of the steering system. The method was implemented in an 

experimental guidance system, which uses Nonlinear Model Predictive Control 

(NMPC) to realize path tracking. The feasibility of the path is crucial to reduce 

the calculation time of the NMPC. In the paper, the field experiments with a 

tractor and a seeder are presented. The results show that the method works both in 

theory and in practice. 
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INTRODUCTION 

 

The workflow of agricultural operations on the fields can be divided into four 

different layers: task planning, path planning, path tracking and actuating. In the 

first layer, task planning, the farmer decides when certain operations are carried 

out or a highly sophisticated farm management system proposes these operations. 

The second layer, path planning, is a part of an automatic navigation system and 

it solves the direction and the order of the driving lines in the field. The last two 

layers, path tracking and actuating, realizes the actual work in the field. In this 

research, Nonlinear Model Predictive Control (NMPC) approach is used in path 

tracking (Backman et al. 2012). It is previously shown that the feasibility of the 

target path is crucial to reduce the computational time of the NMPC and to 

achieve high tracking accuracy (Backman et al. 2010). 

There are at least three different cases in path planning: the direction and the 

order of the driving lines are not limited (for example sowing); the direction of the 

driving lines is given but the order is free (for example silage harvesting); both the 

direction and the order of the driving lines are at least partially fixed (for example 

ploughing). The selection of the path planning method is highly dependent on the 

agricultural operation to be realized. Algorithms for solving the driving lines for 

general operation are also proposed. Oksanen and Visala (2009) have proposed 

two different methods for solving the direction of the driving lines: split-and-

merge approach and predictive recursive online approach. The first one first splits 

the field into subfields which are simple to drive. After the splitting, the best 

driving direction for each subfield is searched. The second algorithm is an 

incremental algorithm that takes the machines and field current state and searches 

the next nearly optimal swath to be operated. Bochtis and Sørensen (2009) have 

proposed a method to tailor the driving order selection to commonly known 

vehicle routing problem (VRP). The method presumes that the optimal direction 

of the driving lines is predefined. Moreover, Bochtis and Sørensen (2010) have 

proposed a similar approach for multiple vehicles.  

The direction and the order of the driving lines generally rule the path that the 

path tracking system should follow. However, the path is not yet feasible. The 

transitions between driving lines i.e. headland turnings are missing. Also, the path 

may contain sharp turns that should be first removed or smoothened. For the first 

problem, Dubins (1957) has showed that, if the car has limited curvature and only 

forward motion is allowed, the minimum path between two arbitrary positions is 

found from the set six different turning types: LRL, RLR, LSL, RSR, LSR and 

RSL, where “L” denotes a left turning segment with maximum curvature, “R” 

denotes right and “S” denotes straight segment. Furthermore, Reeds and Shepp 

(1990) have shown that if the backward motion is also allowed, the minimum path 

is found from the set of 68 different turning types consisting at most four arcs 

with maximum curvature and one straight line segment. However, at the junction 

point between different segments in the path, the curvature is discontinuous, or 

steps appear.  

To prevent discontinuities in the Dubins’ or Reed-Shepp Curves, different 

solutions are proposed. Parlangeli and Indiveri (2010) have proposed a method to 

calculate a smooth path with bounded curvature and curvature derivative. 

However, the method is applicable only when there is a straight line segment 



between two arcs. Fraichard and Scheuer (2004) have proposed a method to 

extend Reeds and Shepps’ turning types to paths with continuous and upper-

bounded curvature and upper-bounded curvature derivative. However, in certain 

cases, the method does not produce paths that have optimal length. In these cases, 

the curvature derivative is allowed to be smaller than maximum. The method is 

also designed to connect only configurations with null curvature. 

There are also various proposals based on numerical optimization (e.g. 

Fernandes et. al. 1991 and Oksanen 2007). The problem with numerical 

optimization is the computational complexity. The algorithms are heavy and there 

is no guaranteed solution at the given time window. 

For the second problem, path smoothing, there are also solutions in the 

literature. Brezak and Petrovic (2011) have proposed a path smoothing method for 

smoothing a path that consists of straight line segments by using clothoids. Also 

Fleury et al. (1995) have introduced a method to smoothen a path described as 

broken lines by circles and connecting clothoids. Yang and Sukkarieh (2010) have 

proposed an analytical method for path smoothing by using cubic Bézier curves. 

Again, the original path consists of straight line segments between waypoints. In 

fact, all the path smoothing algorithms that the author has found are designed to 

smooth paths that are described as either waypoints or straight line segments. 

In the presented research, it is assumed that a field plot is convex. The convex 

area can be covered by drawing lines with equal width side by side from the one 

end to another end such that none of the lines will ever go outside the field. Such 

field can be easily operated by driving to and fro parallel to the longest edge of 

the field. The remaining problem is to find feasible transitions between different 

driving lines i.e. headland turnings and to ensure that all the driving lines are also 

feasible. 

 

METHODS 

 

The full implementation of the path generation system is approximately 5000 

lines of C++ code, so only the basic ideas are represented here. The fundamental 

idea is to use numerical lookup-tables for the fast evaluation of path parameters, 

particularly the momentary centre points of turning circles in spirals. In this 

manner, slow evaluations of Fresnel integrals are avoided. Also, by using 

numerical lookup-tables, the limit of the curvature derivative is not restricted to 

be constant and the resulting spiral is not necessarily Fresnel integral. 

First, the idea of the connecting spirals is introduced. Then the Dubins’ Curves 

are extended to support spirals between arcs and lines. After that, the same idea is 

applied to smooth a predefined path, or in other words limit the curvature of the 

path. Finally, a completely simplified path planning algorithm for convex field 

plots is presented.  

 

Spiral Connection method 

 

Dubins’ Curves consist of six different turning types. These turnings consist of 

arcs with maximum curvature and straight line segment between the two arcs. At 

the junction point between different segments in the path, the curvature is 

discontinuous. To prevent these discontinuities, an extra connection segments 



between every original segment is introduced. The connection segments are 

constructed by driving the car with constant speed and simultaneously turning the 

wheels from right to left with the maximum steering rate (Fig 1). The resulting 

trajectory represents transitions between any two momentary turning circles that 

the car is capable of driving. The positions and headings of the car and the centers 

of the turning circles are stored into a lookup table, from where the connection 

between two arbitrary turnings can be quickly searched. The input parameters to 

the spiral and lookup tables are presented in Algorithm 1.  

In the following subchapters, the calculations of different turning types are 

presented. The LRL and RLR are the basic turning types in the headland turnings. 

In the first subchapter LRL turning is presented. The calculation of RLR turning 

is equal to LRL with the mirrored axis and for that reason omitted. In second 

subchapter the LSL turning is presented. The LSL turning is used if the turning 

distance is rather long relative to the minimum turning radius. Finally, the LSR 

turning is presented. The final turning path is selected from the set of feasible 

turnings such that the turning path has minimum length. 

 

LRL and RLR turnings 

 

The calculation of LRL turning is presented by pseudo code in Algorithm 2 

and by drawing in Fig 2. First the starting and ending spirals are created by 

translating and rotating precalculated spirals such that Spiral1 starting position 

equals to position PA and Spiral4 end position equals to position PB. Then the 

Algorithm 1. CreateSpiral 

Input:      : maximum steering angle 

                  : maximum steering rate 

            wheelbase : the distance between front and rear wheels 

            dt : calculation resolution 

Output:  P(k) : position (x,y) in a spiral corresponding to curvature k 

                 (k) : heading corresponding to curvature k 

               O(k) : centre (x,y) of turning circle corresponding to curvature k 

               r1(k1, k2) : distance from turning circle (k=k1) to path tangent (k=k2) 

               r2(k1, k2) : distance from turning circle (k=k1) to path tangent (k=k2) 

 

 
 
Fig 1. The car is driven with constant speed simultaneously turning wheels from the 

right to the left. The resulting trajectory is a spiral between two turning circles where the 

curvature is bounded by the properties of steering mechanics.  

 



centre of the middle turning circle is calculated by finding the crossing section of 

two circles, which centre points are equal to the centre points of Spiral1 ending 

turning circle and Spiral4 starting turning circle. The radii of the crossing circles 

are calculated from spirals (symbol d in Fig 1), which curvatures starts from kstart 

and end to kcenter and from kcenter to kend equally. If such crossing section is found, 

the corresponding spirals between different turning circles are created again by 

translating and rotating precalculated spiral. Finally, the feasibility of the solution 

is checked. If the travelling angle within the starting or ending circle is greater 

than a half circle i.e. the path has a loop, the curvature of the starting or ending 

circle is decreased until the feasible solution is found or the decreased curvature 

reaches the starting or ending curvature. At last, the feasible turning path is 

evaluated from created spirals. 

Algorithm 2. GenerateLRLTurning 

Input: PA : starting position (x, y,  , k) 

            PB : ending position (x, y,  , k) 

Output: Path : LRL turning path 

 

while (kstart > PA.k & kend > PB.k) 

  Spiral1 = Spiral (PA.k  kstart;  (PA.k) = PA. , P(PA.k) = PA.{x,y}) 

  Spiral4 = Spiral (kend  PB.k;  (PB.k) = PB. , P(PB.k) = PB.{x,y}) 

 

  Ocenter = CrossingOfCircles ( {Spiral1.O(kstart), r = |O(kstart) - O(kcenter)| },  

                                                 {Spiral4.O(kend), r = |O(kcenter) - O(kend)| })  

  if( ~exists(Ocenter) ) 

    return false 

   

  Spiral2 = Spiral(kstart  -kmax; O(kstart ) = Spiral1.O(kstart), O(-kmax) = Ocenter ) 

  Spiral3 = Spiral(-kmax  kend; O(-kmax ) = Ocenter , O(kend) = Spiral4.O(kend)) 

 

  if ( TurningAngleIn (Spiral1.O(kstart), { Spiral1.P(kstart)  Spiral2.P(kstart) } ) >   ) 

    continue with kstart = DecreateOneStep(kstart)  

  if ( TurningAngleIn (Spiral4.O(kend), { Spiral3.P(kend)  Spiral3.P(kend) } ) >   ) 

    continue with kend = DecreateOneStep(kend) 

   

  Path = EvaluatePath(Spiral1, Spiral2, Spiral3, Spiral4) 

end 

 

 
 

Fig 2. LRL turning from position PA to position PB using spirals consists of seven 

differents segments; three arcs and four connecting spirals. 



 

LSL and RSR turnings 

 

The calculation of LSL turning is presented by pseudo code in Algorithm 3 and 

by drawing in Fig 3. As in the LRL turning, first the starting and ending spirals 

are created by translating and rotating precalculated spirals such that Spiral1 

starting position equals to position PA and Spiral4 end position equals to position 

PB. Then the orientation of the centre line is determined based on the starting and 

ending circles and associated distances to the path tangent (r1 and r2 in Fig 1). If it 

is possible to connect the starting and ending circles, corresponding spirals Spiral2 

and Spiral3 are created such that spirals starting and ending circles are equal to 

Spiral1 and Spiral4 ending and starting circles respectively. Finally, the feasibility 

of the solution is checked with a two-part test. In the first test, it is checked that 

there exists a line between Spiral2 and Spiral3. If the spirals are intersecting, the 

curvature of the centre line is increased and connecting spirals to this arc is 

searched iteratively. If the first test is passed, the feasibility of the first and last arc 

is checked as in the LRL turning algorithm. If the path has a loop either in first or 

last arc, then the corresponding curvature is decreased and the algorithm is 

repeated iteratively until either starting or ending curvature is reached or feasible 

solution is found. At last, the feasible turning path is evaluated from created 

spirals. 

 

 
Algorithm 3. GenerateLSLTurning 

Input: PA : starting position (x, y,  , k) 

            PB : ending position (x, y,  , k) 

Output: Path : LSL turning path 

 

while (kstart > PA.k & kend > PB.k) 

  Spiral1 = Spiral (PA.k  kstart;  (PA.k) = PA. , P(PA.k) = PA.{x,y}) 

  Spiral4 = Spiral (kend  PB.k;  (PB.k) = PB. , P(PB.k) = PB.{x,y}) 

  d = |Spiral1.O(kstart) - Spiral4.O(kend)| 

 

  while (kmid < kstart & kmid  < kend) 

    if ( |r1(kstart, kmid) - r2(kend, kmid)| < d ) 

      return false 
 

      = atan2(Spiral1.O(kstart)  Spiral4.O(kend)) - asin  
                             

 
  

    Spiral2 = Spiral (kstart  kmid,  (kmid) =  , O(kstart) = Spiral1.O(kstart)) 

    Spiral3 = Spiral (kmid  kend,  (kmid) =  , O(kend) = Spiral4.O(kend)) 

 

    if ( atan2(Spiral2.P(kmid)  Spiral3.P(kmid)    ) 

      continue with kmid = IncreateOneStep(kmid) 

  end 

 

  if ( TurningAngleIn (Spiral1.O(kstart), { Spiral1.P(kstart)  Spiral2.P(kstart) } ) >   ) 

    continue with kstart = DecreateOneStep(kstart)  

  if ( TurningAngleIn (Spiral4.O(kend), { Spiral3.P(kend)  Spiral3.P(kend) } ) >   ) 

    continue with kend = DecreateOneStep(kend) 

   

  Path = EvaluatePath(Spiral1, Spiral2, Spiral3, Spiral4) 

end 
 



LSR and RSL turnings 

 

The calculation of LSR turning is presented by pseudo code in Algorithm 4 

and by drawing in Fig 4. The algorithm is very similar to LSL algorithm but the 

curvature in the middle of the path must go through zero and for the reason the 

algorithm is slightly simpler. Again, the starting and ending spirals are created 

first. After that, the centre spirals and possible centre line is created. If the path 

has loops, the starting or ending circle is reduced until the path is feasible or the 

solution is not possible. Finally, the resulting path is evaluated from created 

spirals. 

 

 

 
 
Fig 3. LSL turning from position PA to position PB using spirals consists of seven 

different segments; two arcs, one line and four connecting spirals. 

 

Algorithm 4. GenerateLSRTurning 

Input: PA : starting position (x, y,  , k) 

            PB : ending position (x, y,  , k) 

Output: Path : LSR turning path 

 

while (kstart > PA.k & kend > PB.k) 

  Spiral1 = Spiral (PA.k  kstart;  (PA.k) = PA. , P(PA.k) = PA.{x,y}) 

  Spiral4 = Spiral (kend  PB.k;  (PB.k) = PB. , P(PB.k) = PB.{x,y}) 

  d = |Spiral1.O(kstart) - Spiral4.O(kend)| 

 

  if ( |O(kstar) - O(kend) | < d ) 

    return false 
 

    = atan2(Spiral1.O(kstart)  Spiral4.O(kend)) - asin  
                       

 
  

  Spiral2 = Spiral (kstart  0,  (0) =  , O(kstart) = Spiral1.O(kstart)) 

  Spiral3 = Spiral (0  kend,  (0) =  , O(kend) = Spiral4.O(kend)) 

 

  if ( TurningAngleIn (Spiral1.O(kstart), { Spiral1.P(kstart)  Spiral2.P(kstart) } ) >   ) 

    continue with kstart = DecreateOneStep(kstart)  

  if ( TurningAngleIn (Spiral4.O(kend), { Spiral3.P(kend)  Spiral3.P(kend) } ) >   ) 

    continue with kend = DecreateOneStep(kend) 

   

  Path = EvaluatePath(Spiral1, Spiral2, Spiral3, Spiral4) 

end 
 



Path smoothing 

 

Another challenge in path generation arises when the previous driving line is 

used to create a new path: too sharp curves. Especially in inner curves the turning 

circle of the driving line decreases and eventually it is impossible to follow. 

The Algorithm 5 replaces the path points in inner curves such that the resulting 

curve is feasible. Before the algorithm can be applied, the path is first scanned 

through and the starting and ending points of sharp curves are identified. The 

curvature limit is calculated from the working width according to equation: 

 

        
                 

                                  
          (1) 

 

Algorithm 5 takes the starting and ending points of the too sharp curve and the 

limit values together with the original path as an input. The output of the 

algorithm is the smoothened path, where the path points in the neighborhood of 

the sharp curve are moved so that the curvature of the resulting path is less than 

the limit (Eq. 1). 

The algorithm first creates several starting and ending spirals to the circle of 

maximum curvature from path points starting from given start and end points and 

moving further from the limited curve. The spiral starting and ending points have 

the same position, orientation and curvature as the original path starting and 

ending points have, respectively. The centre positions of the turning circles of the 

created spirals form two polylines. The crossing of these polylines is the centre of 

the desired turning circle. The starting and ending spirals to and from this turning 

circle can be calculated by taking weighted average of starting and ending spirals 

before and after the crossing section. The resulting smoothened path is obtained 

by moving the original path points to the nearest position in the evaluated spiral-

arc-spiral path.  

 

 

 
 

Fig 4. LSR turning from position PA to position PB using spirals consists of seven 

different segments; two arcs, one line and four connecting spirals. 

 



 

 

 

 

 

  

Algorithm 5. ReplaceSharpCurve  

Input: start : starting position in Path  

           end : ending position in Path 

           klimit : maximum limited curvature 

           Path : original path 

Output: SmoothPath : new path with limited curvature 

 

  for i := start to start - SEARCH_POINTS 

    Spiralstart[i] = Spiral ( Path[i].k  klimit,  

                                          P(Path[i].k) = Path[i].P,  (Path[i].k) = Path[i].   ) 

    Ostart[i] = Spiral start[i].O(klimit) 

  end 

 

  for i := end to end + SEARCH_POINTS 

    Spiralend[i] = Spiral ( klimit  Path[i].k,  

                                        P(Path[i].k) = Path[i].P,  (Path[i].k) = Path[i].  ) 

    Oend[i] = Spiral end[i].O(klimit) 

  end 

 

  [s, e] = FindCrossing(Ostart[1:SEARCH_POINTS] , Oend[1:SEARCH_POINTS]) 

 

  Spiral1 = WeightedAvg( Spiralstart[floor(s)]  Spiralstart[ceil(s)]; weight = s-floor(s) ) 

  Spiral2 = WeightedAvg( Spiralend[floor(e)]  Spiralend[ceil(e)]; weight = e-floor(e) ) 

 

  SmoothPath = ReplacePathPoints( EvaluatePath(Spiral1, Spiral2)  Path ) 

  

 

 

 

 
 

Fig 5.  ReplaceSharpCurve-algorithm finds suitable spirals to connect the original (solid 

blue) path to the circular arch (black), which radius is equal to the minimum turning radius 

plus the working width. Because the gap between stored path points is relatively large, the 

resulting limited curvature (red plot line) is quite smooth. 

 



Path Planning for Agricultural Vehicle 

 

The simplified path planning algorithm for agricultural vehicles utilizes above 

described spiral algorithms. The basic idea of the path planning algorithm is to 

follow the previously driven driving lines or swaths with some offset that is 

multiple of working width. 

 The working order of the field is always the same. The field boundaries are 

first processed by driving around the field. After the predetermined number of 

cycles, the last driving line (or cycle) is decomposed into relatively straight 

segments according to algorithm found in Oksanen (2007) and the longest one is 

searched. The tracking of the cycle is continued until the longest segment is 

reached. After that, the processing of the inner area is continued.  

 

 
 

Fig 6. The state diagram of the simplified path planning algorithm. On the right is 

visualized the triggering points of  the state chart both in headland area work and in inner 

area work and the evolution of the path; the solid blue is the original path, dashed blue is 

the next path connected to the original and the red is the last path connected at this stage.  



The state diagram of the simplified path planning algorithm is presented in the 

Fig 6. The algorithm has three main states: PathStart, PathNearEnd and 

PathChange. Path planning is realized when entering these states. The triggering 

points to these states are illustrated on the right of the Fig 6. When the headland 

area is processed and the path is near to an end, a new recorded path is connected 

to the currently followed path. When the followed path changes to this new path, 

recording of the new path is stopped and the path is saved to the memory. The 

currently followed path is also smoothened with the Algorithm 5. The process is 

repeated until the turning pattern has ended.  

 The inner area processing has the same triggering points as the headland 

area processing. However, when the currently followed path is a working path, 

the headland turning is generated before the working path has ended. When the 

currently followed path changes to a headland path, the closest path near to the 

end of the turning end point is searched and it is connected to the headland path. 

If there are crossing points on the connected path, those are removed i.e. the 

connected path is shortened such that it does not cross any previously driven path. 

After the headland path changes to a working path, recording is restarted. The 

new path is saved only when the path to be followed is a working path. The 

process is repeated until the whole field is processed. 

 

RESULTS 

 

The proposed path planning algorithm together with the Spiral Connection and 

the smoothing methods were implemented in an experimental automatic 

navigation system. The path tracking method in the experimental system is based 

on NMPC and the feasibility of the path is crucial for the calculation time and 

accuracy. First the comparison of the different turning types with the Dubins’ 

Curves and with the Spiral Connection methods is done. Then one complete 

agricultural operation is reported and an extra attention is set to the case, where 

the curvature is limited. 

In the Fig 7 are visualized different turning scenarios. The first one 

corresponds to normal turning to the adjacent row. The second one corresponds to 

turning over several rows. The last turning can be happen only if changing the 

row in the middle of the field or for example when changing from one subfield to 

another. The blue line is generated by using the Spiral Connection method and the 

red line is generated by the Dubins’ Curves. The path with the Spiral Connection 

method is always longer than with maximal curvature curves, but the curvature is 

continuous.  

The calculation time and path length were further analyzed by generating 

turnings between 1000 randomly chosen starting and ending points using 

parameters:     = 0.65,      = 0.4, wheelbase = 2.8 and dt = 0.1. The average 

calculation time of Dubins’ Curves was about 2 ms and with the Spiral 

Connection method it was about 35 ms with non optimized Matlab-code. The 

average ratio between the path lengths was 1.14, meaning that headland turnings 

with the Spiral Connection methods were on the average 14 % longer than 

Dubins’ Curves. In the worst case, the Spiral Connection path was 25 % longer 

than Dubins’ Curves path. 



In the Fig 8 is visualized one complete agricultural operation in the real field; 

seeding with towed implement. In this particular case, the field is first driven 

around 7 times to insure sufficient space in the headland. After that, the inner area 

of the field is operated by driving to and fro always turning to the adjacent swath. 

The automatic navigation system operated completely autonomously except when 

there was an electric pole in the middle of the swath at fourth cycle. At that time, 

the driver turned the steering wheel to avoid the obstacle. The north-west corner is 

enlarged to emphasize the effect of the path smoothing. Also, the turnings of the 

south end are enlarged to emphasize the Spiral Connection method in turnings. 

 
Fig 7. Comparation of different turning types: LRL, RSR and LSR. 

 

 

 
Fig 8. Driven trajectories (blue) and generated path (black) in real field. 



With the test equipments and with slipping present, the maximum curvature 

that the tractor is capable to drive is 0.14 m
-1

 meaning 23 deg steering angle with 

2.8 m wheelbase. If the following distance is 3 m, the maximum curvature of the 

followed path is 0.10 m
-1

 according to Eq. 1. In the Fig 9 is part of the path that is 

showed entirely in the Fig 8. The original path curvature is -0.14 m
-1

 at most, 

meaning that the tractor is turning full right. The smoothened path curvature is -

0.10 m
-1

 at most. In the original path, the radius of the turning circle is 7.1 m and 

in the smoothened path, the radius is 10 m. Therefore, if the following distance is 

3 m, the radius of the turning circle remains the same about 7 m that the tractor is 

capable of drive. 

 

DISCUSSION 

 

The results show that the method works both in theory and in practice. 

Although the path is not analytically solved, it is still faster to calculate than with 

numerical optimization methods. The iteration times are bounded to be at 

maximum the number of half spiral elements squared in the LSL and RSR 

turnings that are the worst scenarios. With the parameters used in the experiments 

(    = 0.65,      = 0.4, dt = 0.1), that means 289 iterations in the worst case. 

The comparison of the calculation time and path length showed that the Spiral 

Connection method takes about 15 times longer to calculate than the Dubins’ 

Curves, but the calculation time is still short even when the code is not optimized. 

The length with the Spiral Connection method is naturally longer than with 

Dubins’ Curves, being at maximum 24 % longer in the worst case.  

The steering rate is constrained by using the maximum derivative of the 

steering angle. Other solutions found from the literature use the maximum 

derivative of the curvature. The proposed solution can be modified to limit the 

steering rate by any function which is dependent on the current steering angle. In 

reality, however, the steering actuator is a dynamical system and the steering rate 

cannot change infinitely fast. Therefore also the second derivative of the curvature 

should be taken into account. However, the impact of the second derivative would 

be negligible. 

 

 

 
Fig 9. Path smoothing in the corner of the field. The original path is blue and path with 

limited curvature is red. Corresponding curvatures are in right image. 

 

 



In this paper, the objective of the path planning method was limited into 

convex field plots only. However, the method works in practice also for non-

convex field plots. The field reported in the results is not convex, but it can be 

covered by this algorithm. Also, the algorithm can be extended to support most of 

the field types by combining it for example the split-and-merge algorithm 

(Oksanen et al. 2009) where the field is first divided into convex subfields. The 

Spiral Connection method and path smoothing can also be used separately with 

different path planning methods. 

 

CONCLUSIONS 

 

In this paper, the Spiral Connection method was proposed. With the proposed 

method, the desired path is always feasible with respect to the constraints of the 

steering system. The Spiral Connection method was applied to modify the well-

known shortest path principle, Dubins’ Spirals, such that the curvature of the 

resulting path is continuous. The method can be applied also to smoothen or 

constrain the curvature of an arbitrary path.  

The proposed Spiral Connection method was implemented in an experimental 

automatic navigation system, which used NMPC as a path tracking algorithm. 

The results show that the method works both in theory and in practice. 
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