
PATH GENERATION METHOD WITH STEERING RATE

CONSTRAINT

J. Backman, T. Oksanen, and A. Visala

Department of Automation and Systems Technology

School of Electrical Engineering

Aalto University

Espoo, Finland

ABSTRACT

The practical way to generate a reference path in path tracking is to follow an

adjacent swath. However, if the adjacent swath contains sharp turnings, the

reference path will eventually contain sharper turn than the tractor is able to

follow. This occurs especially in the corner of a field plot when the field is driven

around.

In the headland, the objective is to minimize the time to reach the next swath.

The commonly known method to generate the shortest path between two arbitrary

positions is to use Dubins’ Curves. The Dubins’ Curves consist of curves with

minimum turning radius and line segments connected together. The problem is

that at the junction point of the path, the vehicle would have to either stop or turn

wheels infinitely fast, which is not practical. Another approach is to use

mathematical optimization methods to calculate the shortest path between two

positions. Constraints are met, but the computational cost is high.

To overcome the problems above, a Spiral Connection method is proposed in

the paper. The Spiral Connection method meets the constraints of the

mechatronical steering system. If the steering rate is limited and tractor curvature

is changed from the other extreme position to another, the tractor drives along a

spiral. The Dubins’ Curves method is modified to support spirals between curves

and lines. Furthermore, in adjacent swath tracking the Spiral Connection method

is used to limit the curvature of the desired path.

With the proposed method, the desired path is always feasible with respect to

the constraints of the steering system. The method was implemented in an

experimental guidance system, which uses Nonlinear Model Predictive Control

(NMPC) to realize path tracking. The feasibility of the path is crucial to reduce

the calculation time of the NMPC. In the paper, the field experiments with a

tractor and a seeder are presented. The results show that the method works both in

theory and in practice.

Keywords: tractors, guidance, path planning, continuous curvature,

computational geometry

INTRODUCTION

The workflow of agricultural operations on the fields can be divided into four

different layers: task planning, path planning, path tracking and actuating. In the

first layer, task planning, the farmer decides when certain operations are carried

out or a highly sophisticated farm management system proposes these operations.

The second layer, path planning, is a part of an automatic navigation system and

it solves the direction and the order of the driving lines in the field. The last two

layers, path tracking and actuating, realizes the actual work in the field. In this

research, Nonlinear Model Predictive Control (NMPC) approach is used in path

tracking (Backman et al. 2012). It is previously shown that the feasibility of the

target path is crucial to reduce the computational time of the NMPC and to

achieve high tracking accuracy (Backman et al. 2010).

There are at least three different cases in path planning: the direction and the

order of the driving lines are not limited (for example sowing); the direction of the

driving lines is given but the order is free (for example silage harvesting); both the

direction and the order of the driving lines are at least partially fixed (for example

ploughing). The selection of the path planning method is highly dependent on the

agricultural operation to be realized. Algorithms for solving the driving lines for

general operation are also proposed. Oksanen and Visala (2009) have proposed

two different methods for solving the direction of the driving lines: split-and-

merge approach and predictive recursive online approach. The first one first splits

the field into subfields which are simple to drive. After the splitting, the best

driving direction for each subfield is searched. The second algorithm is an

incremental algorithm that takes the machines and field current state and searches

the next nearly optimal swath to be operated. Bochtis and Sørensen (2009) have

proposed a method to tailor the driving order selection to commonly known

vehicle routing problem (VRP). The method presumes that the optimal direction

of the driving lines is predefined. Moreover, Bochtis and Sørensen (2010) have

proposed a similar approach for multiple vehicles.

The direction and the order of the driving lines generally rule the path that the

path tracking system should follow. However, the path is not yet feasible. The

transitions between driving lines i.e. headland turnings are missing. Also, the path

may contain sharp turns that should be first removed or smoothened. For the first

problem, Dubins (1957) has showed that, if the car has limited curvature and only

forward motion is allowed, the minimum path between two arbitrary positions is

found from the set six different turning types: LRL, RLR, LSL, RSR, LSR and

RSL, where “L” denotes a left turning segment with maximum curvature, “R”

denotes right and “S” denotes straight segment. Furthermore, Reeds and Shepp

(1990) have shown that if the backward motion is also allowed, the minimum path

is found from the set of 68 different turning types consisting at most four arcs

with maximum curvature and one straight line segment. However, at the junction

point between different segments in the path, the curvature is discontinuous, or

steps appear.

To prevent discontinuities in the Dubins’ or Reed-Shepp Curves, different

solutions are proposed. Parlangeli and Indiveri (2010) have proposed a method to

calculate a smooth path with bounded curvature and curvature derivative.

However, the method is applicable only when there is a straight line segment

between two arcs. Fraichard and Scheuer (2004) have proposed a method to

extend Reeds and Shepps’ turning types to paths with continuous and upper-

bounded curvature and upper-bounded curvature derivative. However, in certain

cases, the method does not produce paths that have optimal length. In these cases,

the curvature derivative is allowed to be smaller than maximum. The method is

also designed to connect only configurations with null curvature.

There are also various proposals based on numerical optimization (e.g.

Fernandes et. al. 1991 and Oksanen 2007). The problem with numerical

optimization is the computational complexity. The algorithms are heavy and there

is no guaranteed solution at the given time window.

For the second problem, path smoothing, there are also solutions in the

literature. Brezak and Petrovic (2011) have proposed a path smoothing method for

smoothing a path that consists of straight line segments by using clothoids. Also

Fleury et al. (1995) have introduced a method to smoothen a path described as

broken lines by circles and connecting clothoids. Yang and Sukkarieh (2010) have

proposed an analytical method for path smoothing by using cubic Bézier curves.

Again, the original path consists of straight line segments between waypoints. In

fact, all the path smoothing algorithms that the author has found are designed to

smooth paths that are described as either waypoints or straight line segments.

In the presented research, it is assumed that a field plot is convex. The convex

area can be covered by drawing lines with equal width side by side from the one

end to another end such that none of the lines will ever go outside the field. Such

field can be easily operated by driving to and fro parallel to the longest edge of

the field. The remaining problem is to find feasible transitions between different

driving lines i.e. headland turnings and to ensure that all the driving lines are also

feasible.

METHODS

The full implementation of the path generation system is approximately 5000

lines of C++ code, so only the basic ideas are represented here. The fundamental

idea is to use numerical lookup-tables for the fast evaluation of path parameters,

particularly the momentary centre points of turning circles in spirals. In this

manner, slow evaluations of Fresnel integrals are avoided. Also, by using

numerical lookup-tables, the limit of the curvature derivative is not restricted to

be constant and the resulting spiral is not necessarily Fresnel integral.

First, the idea of the connecting spirals is introduced. Then the Dubins’ Curves

are extended to support spirals between arcs and lines. After that, the same idea is

applied to smooth a predefined path, or in other words limit the curvature of the

path. Finally, a completely simplified path planning algorithm for convex field

plots is presented.

Spiral Connection method

Dubins’ Curves consist of six different turning types. These turnings consist of

arcs with maximum curvature and straight line segment between the two arcs. At

the junction point between different segments in the path, the curvature is

discontinuous. To prevent these discontinuities, an extra connection segments

between every original segment is introduced. The connection segments are

constructed by driving the car with constant speed and simultaneously turning the

wheels from right to left with the maximum steering rate (Fig 1). The resulting

trajectory represents transitions between any two momentary turning circles that

the car is capable of driving. The positions and headings of the car and the centers

of the turning circles are stored into a lookup table, from where the connection

between two arbitrary turnings can be quickly searched. The input parameters to

the spiral and lookup tables are presented in Algorithm 1.

In the following subchapters, the calculations of different turning types are

presented. The LRL and RLR are the basic turning types in the headland turnings.

In the first subchapter LRL turning is presented. The calculation of RLR turning

is equal to LRL with the mirrored axis and for that reason omitted. In second

subchapter the LSL turning is presented. The LSL turning is used if the turning

distance is rather long relative to the minimum turning radius. Finally, the LSR

turning is presented. The final turning path is selected from the set of feasible

turnings such that the turning path has minimum length.

LRL and RLR turnings

The calculation of LRL turning is presented by pseudo code in Algorithm 2

and by drawing in Fig 2. First the starting and ending spirals are created by

translating and rotating precalculated spirals such that Spiral1 starting position

equals to position PA and Spiral4 end position equals to position PB. Then the

Algorithm 1. CreateSpiral

Input: : maximum steering angle

 : maximum steering rate

 wheelbase : the distance between front and rear wheels

 dt : calculation resolution

Output: P(k) : position (x,y) in a spiral corresponding to curvature k

 (k) : heading corresponding to curvature k

 O(k) : centre (x,y) of turning circle corresponding to curvature k

 r1(k1, k2) : distance from turning circle (k=k1) to path tangent (k=k2)

 r2(k1, k2) : distance from turning circle (k=k1) to path tangent (k=k2)

Fig 1. The car is driven with constant speed simultaneously turning wheels from the

right to the left. The resulting trajectory is a spiral between two turning circles where the

curvature is bounded by the properties of steering mechanics.

centre of the middle turning circle is calculated by finding the crossing section of

two circles, which centre points are equal to the centre points of Spiral1 ending

turning circle and Spiral4 starting turning circle. The radii of the crossing circles

are calculated from spirals (symbol d in Fig 1), which curvatures starts from kstart

and end to kcenter and from kcenter to kend equally. If such crossing section is found,

the corresponding spirals between different turning circles are created again by

translating and rotating precalculated spiral. Finally, the feasibility of the solution

is checked. If the travelling angle within the starting or ending circle is greater

than a half circle i.e. the path has a loop, the curvature of the starting or ending

circle is decreased until the feasible solution is found or the decreased curvature

reaches the starting or ending curvature. At last, the feasible turning path is

evaluated from created spirals.

Algorithm 2. GenerateLRLTurning

Input: PA : starting position (x, y, , k)

 PB : ending position (x, y, , k)

Output: Path : LRL turning path

while (kstart > PA.k & kend > PB.k)

 Spiral1 = Spiral (PA.k kstart; (PA.k) = PA. , P(PA.k) = PA.{x,y})

 Spiral4 = Spiral (kend PB.k; (PB.k) = PB. , P(PB.k) = PB.{x,y})

 Ocenter = CrossingOfCircles ({Spiral1.O(kstart), r = |O(kstart) - O(kcenter)| },

 {Spiral4.O(kend), r = |O(kcenter) - O(kend)| })

 if(~exists(Ocenter))

 return false

 Spiral2 = Spiral(kstart -kmax; O(kstart) = Spiral1.O(kstart), O(-kmax) = Ocenter)

 Spiral3 = Spiral(-kmax kend; O(-kmax) = Ocenter , O(kend) = Spiral4.O(kend))

 if (TurningAngleIn (Spiral1.O(kstart), { Spiral1.P(kstart) Spiral2.P(kstart) }) >)

 continue with kstart = DecreateOneStep(kstart)

 if (TurningAngleIn (Spiral4.O(kend), { Spiral3.P(kend) Spiral3.P(kend) }) >)

 continue with kend = DecreateOneStep(kend)

 Path = EvaluatePath(Spiral1, Spiral2, Spiral3, Spiral4)

end

Fig 2. LRL turning from position PA to position PB using spirals consists of seven

differents segments; three arcs and four connecting spirals.

LSL and RSR turnings

The calculation of LSL turning is presented by pseudo code in Algorithm 3 and

by drawing in Fig 3. As in the LRL turning, first the starting and ending spirals

are created by translating and rotating precalculated spirals such that Spiral1

starting position equals to position PA and Spiral4 end position equals to position

PB. Then the orientation of the centre line is determined based on the starting and

ending circles and associated distances to the path tangent (r1 and r2 in Fig 1). If it

is possible to connect the starting and ending circles, corresponding spirals Spiral2

and Spiral3 are created such that spirals starting and ending circles are equal to

Spiral1 and Spiral4 ending and starting circles respectively. Finally, the feasibility

of the solution is checked with a two-part test. In the first test, it is checked that

there exists a line between Spiral2 and Spiral3. If the spirals are intersecting, the

curvature of the centre line is increased and connecting spirals to this arc is

searched iteratively. If the first test is passed, the feasibility of the first and last arc

is checked as in the LRL turning algorithm. If the path has a loop either in first or

last arc, then the corresponding curvature is decreased and the algorithm is

repeated iteratively until either starting or ending curvature is reached or feasible

solution is found. At last, the feasible turning path is evaluated from created

spirals.

Algorithm 3. GenerateLSLTurning

Input: PA : starting position (x, y, , k)

 PB : ending position (x, y, , k)

Output: Path : LSL turning path

while (kstart > PA.k & kend > PB.k)

 Spiral1 = Spiral (PA.k kstart; (PA.k) = PA. , P(PA.k) = PA.{x,y})

 Spiral4 = Spiral (kend PB.k; (PB.k) = PB. , P(PB.k) = PB.{x,y})

 d = |Spiral1.O(kstart) - Spiral4.O(kend)|

 while (kmid < kstart & kmid < kend)

 if (|r1(kstart, kmid) - r2(kend, kmid)| < d)

 return false

 = atan2(Spiral1.O(kstart) Spiral4.O(kend)) - asin

 Spiral2 = Spiral (kstart kmid, (kmid) = , O(kstart) = Spiral1.O(kstart))

 Spiral3 = Spiral (kmid kend, (kmid) = , O(kend) = Spiral4.O(kend))

 if (atan2(Spiral2.P(kmid) Spiral3.P(kmid))

 continue with kmid = IncreateOneStep(kmid)

 end

 if (TurningAngleIn (Spiral1.O(kstart), { Spiral1.P(kstart) Spiral2.P(kstart) }) >)

 continue with kstart = DecreateOneStep(kstart)

 if (TurningAngleIn (Spiral4.O(kend), { Spiral3.P(kend) Spiral3.P(kend) }) >)

 continue with kend = DecreateOneStep(kend)

 Path = EvaluatePath(Spiral1, Spiral2, Spiral3, Spiral4)

end

LSR and RSL turnings

The calculation of LSR turning is presented by pseudo code in Algorithm 4

and by drawing in Fig 4. The algorithm is very similar to LSL algorithm but the

curvature in the middle of the path must go through zero and for the reason the

algorithm is slightly simpler. Again, the starting and ending spirals are created

first. After that, the centre spirals and possible centre line is created. If the path

has loops, the starting or ending circle is reduced until the path is feasible or the

solution is not possible. Finally, the resulting path is evaluated from created

spirals.

Fig 3. LSL turning from position PA to position PB using spirals consists of seven

different segments; two arcs, one line and four connecting spirals.

Algorithm 4. GenerateLSRTurning

Input: PA : starting position (x, y, , k)

 PB : ending position (x, y, , k)

Output: Path : LSR turning path

while (kstart > PA.k & kend > PB.k)

 Spiral1 = Spiral (PA.k kstart; (PA.k) = PA. , P(PA.k) = PA.{x,y})

 Spiral4 = Spiral (kend PB.k; (PB.k) = PB. , P(PB.k) = PB.{x,y})

 d = |Spiral1.O(kstart) - Spiral4.O(kend)|

 if (|O(kstar) - O(kend) | < d)

 return false

 = atan2(Spiral1.O(kstart) Spiral4.O(kend)) - asin

 Spiral2 = Spiral (kstart 0, (0) = , O(kstart) = Spiral1.O(kstart))

 Spiral3 = Spiral (0 kend, (0) = , O(kend) = Spiral4.O(kend))

 if (TurningAngleIn (Spiral1.O(kstart), { Spiral1.P(kstart) Spiral2.P(kstart) }) >)

 continue with kstart = DecreateOneStep(kstart)

 if (TurningAngleIn (Spiral4.O(kend), { Spiral3.P(kend) Spiral3.P(kend) }) >)

 continue with kend = DecreateOneStep(kend)

 Path = EvaluatePath(Spiral1, Spiral2, Spiral3, Spiral4)

end

Path smoothing

Another challenge in path generation arises when the previous driving line is

used to create a new path: too sharp curves. Especially in inner curves the turning

circle of the driving line decreases and eventually it is impossible to follow.

The Algorithm 5 replaces the path points in inner curves such that the resulting

curve is feasible. Before the algorithm can be applied, the path is first scanned

through and the starting and ending points of sharp curves are identified. The

curvature limit is calculated from the working width according to equation:

 (1)

Algorithm 5 takes the starting and ending points of the too sharp curve and the

limit values together with the original path as an input. The output of the

algorithm is the smoothened path, where the path points in the neighborhood of

the sharp curve are moved so that the curvature of the resulting path is less than

the limit (Eq. 1).

The algorithm first creates several starting and ending spirals to the circle of

maximum curvature from path points starting from given start and end points and

moving further from the limited curve. The spiral starting and ending points have

the same position, orientation and curvature as the original path starting and

ending points have, respectively. The centre positions of the turning circles of the

created spirals form two polylines. The crossing of these polylines is the centre of

the desired turning circle. The starting and ending spirals to and from this turning

circle can be calculated by taking weighted average of starting and ending spirals

before and after the crossing section. The resulting smoothened path is obtained

by moving the original path points to the nearest position in the evaluated spiral-

arc-spiral path.

Fig 4. LSR turning from position PA to position PB using spirals consists of seven

different segments; two arcs, one line and four connecting spirals.

Algorithm 5. ReplaceSharpCurve

Input: start : starting position in Path

 end : ending position in Path

 klimit : maximum limited curvature

 Path : original path

Output: SmoothPath : new path with limited curvature

 for i := start to start - SEARCH_POINTS

 Spiralstart[i] = Spiral (Path[i].k klimit,

 P(Path[i].k) = Path[i].P, (Path[i].k) = Path[i].)

 Ostart[i] = Spiral start[i].O(klimit)

 end

 for i := end to end + SEARCH_POINTS

 Spiralend[i] = Spiral (klimit Path[i].k,

 P(Path[i].k) = Path[i].P, (Path[i].k) = Path[i].)

 Oend[i] = Spiral end[i].O(klimit)

 end

 [s, e] = FindCrossing(Ostart[1:SEARCH_POINTS] , Oend[1:SEARCH_POINTS])

 Spiral1 = WeightedAvg(Spiralstart[floor(s)] Spiralstart[ceil(s)]; weight = s-floor(s))

 Spiral2 = WeightedAvg(Spiralend[floor(e)] Spiralend[ceil(e)]; weight = e-floor(e))

 SmoothPath = ReplacePathPoints(EvaluatePath(Spiral1, Spiral2) Path)

Fig 5. ReplaceSharpCurve-algorithm finds suitable spirals to connect the original (solid

blue) path to the circular arch (black), which radius is equal to the minimum turning radius

plus the working width. Because the gap between stored path points is relatively large, the

resulting limited curvature (red plot line) is quite smooth.

Path Planning for Agricultural Vehicle

The simplified path planning algorithm for agricultural vehicles utilizes above

described spiral algorithms. The basic idea of the path planning algorithm is to

follow the previously driven driving lines or swaths with some offset that is

multiple of working width.

 The working order of the field is always the same. The field boundaries are

first processed by driving around the field. After the predetermined number of

cycles, the last driving line (or cycle) is decomposed into relatively straight

segments according to algorithm found in Oksanen (2007) and the longest one is

searched. The tracking of the cycle is continued until the longest segment is

reached. After that, the processing of the inner area is continued.

Fig 6. The state diagram of the simplified path planning algorithm. On the right is

visualized the triggering points of the state chart both in headland area work and in inner

area work and the evolution of the path; the solid blue is the original path, dashed blue is

the next path connected to the original and the red is the last path connected at this stage.

The state diagram of the simplified path planning algorithm is presented in the

Fig 6. The algorithm has three main states: PathStart, PathNearEnd and

PathChange. Path planning is realized when entering these states. The triggering

points to these states are illustrated on the right of the Fig 6. When the headland

area is processed and the path is near to an end, a new recorded path is connected

to the currently followed path. When the followed path changes to this new path,

recording of the new path is stopped and the path is saved to the memory. The

currently followed path is also smoothened with the Algorithm 5. The process is

repeated until the turning pattern has ended.

 The inner area processing has the same triggering points as the headland

area processing. However, when the currently followed path is a working path,

the headland turning is generated before the working path has ended. When the

currently followed path changes to a headland path, the closest path near to the

end of the turning end point is searched and it is connected to the headland path.

If there are crossing points on the connected path, those are removed i.e. the

connected path is shortened such that it does not cross any previously driven path.

After the headland path changes to a working path, recording is restarted. The

new path is saved only when the path to be followed is a working path. The

process is repeated until the whole field is processed.

RESULTS

The proposed path planning algorithm together with the Spiral Connection and

the smoothing methods were implemented in an experimental automatic

navigation system. The path tracking method in the experimental system is based

on NMPC and the feasibility of the path is crucial for the calculation time and

accuracy. First the comparison of the different turning types with the Dubins’

Curves and with the Spiral Connection methods is done. Then one complete

agricultural operation is reported and an extra attention is set to the case, where

the curvature is limited.

In the Fig 7 are visualized different turning scenarios. The first one

corresponds to normal turning to the adjacent row. The second one corresponds to

turning over several rows. The last turning can be happen only if changing the

row in the middle of the field or for example when changing from one subfield to

another. The blue line is generated by using the Spiral Connection method and the

red line is generated by the Dubins’ Curves. The path with the Spiral Connection

method is always longer than with maximal curvature curves, but the curvature is

continuous.

The calculation time and path length were further analyzed by generating

turnings between 1000 randomly chosen starting and ending points using

parameters: = 0.65, = 0.4, wheelbase = 2.8 and dt = 0.1. The average

calculation time of Dubins’ Curves was about 2 ms and with the Spiral

Connection method it was about 35 ms with non optimized Matlab-code. The

average ratio between the path lengths was 1.14, meaning that headland turnings

with the Spiral Connection methods were on the average 14 % longer than

Dubins’ Curves. In the worst case, the Spiral Connection path was 25 % longer

than Dubins’ Curves path.

In the Fig 8 is visualized one complete agricultural operation in the real field;

seeding with towed implement. In this particular case, the field is first driven

around 7 times to insure sufficient space in the headland. After that, the inner area

of the field is operated by driving to and fro always turning to the adjacent swath.

The automatic navigation system operated completely autonomously except when

there was an electric pole in the middle of the swath at fourth cycle. At that time,

the driver turned the steering wheel to avoid the obstacle. The north-west corner is

enlarged to emphasize the effect of the path smoothing. Also, the turnings of the

south end are enlarged to emphasize the Spiral Connection method in turnings.

Fig 7. Comparation of different turning types: LRL, RSR and LSR.

Fig 8. Driven trajectories (blue) and generated path (black) in real field.

With the test equipments and with slipping present, the maximum curvature

that the tractor is capable to drive is 0.14 m
-1

 meaning 23 deg steering angle with

2.8 m wheelbase. If the following distance is 3 m, the maximum curvature of the

followed path is 0.10 m
-1

 according to Eq. 1. In the Fig 9 is part of the path that is

showed entirely in the Fig 8. The original path curvature is -0.14 m
-1

 at most,

meaning that the tractor is turning full right. The smoothened path curvature is -

0.10 m
-1

 at most. In the original path, the radius of the turning circle is 7.1 m and

in the smoothened path, the radius is 10 m. Therefore, if the following distance is

3 m, the radius of the turning circle remains the same about 7 m that the tractor is

capable of drive.

DISCUSSION

The results show that the method works both in theory and in practice.

Although the path is not analytically solved, it is still faster to calculate than with

numerical optimization methods. The iteration times are bounded to be at

maximum the number of half spiral elements squared in the LSL and RSR

turnings that are the worst scenarios. With the parameters used in the experiments

(= 0.65, = 0.4, dt = 0.1), that means 289 iterations in the worst case.

The comparison of the calculation time and path length showed that the Spiral

Connection method takes about 15 times longer to calculate than the Dubins’

Curves, but the calculation time is still short even when the code is not optimized.

The length with the Spiral Connection method is naturally longer than with

Dubins’ Curves, being at maximum 24 % longer in the worst case.

The steering rate is constrained by using the maximum derivative of the

steering angle. Other solutions found from the literature use the maximum

derivative of the curvature. The proposed solution can be modified to limit the

steering rate by any function which is dependent on the current steering angle. In

reality, however, the steering actuator is a dynamical system and the steering rate

cannot change infinitely fast. Therefore also the second derivative of the curvature

should be taken into account. However, the impact of the second derivative would

be negligible.

Fig 9. Path smoothing in the corner of the field. The original path is blue and path with

limited curvature is red. Corresponding curvatures are in right image.

In this paper, the objective of the path planning method was limited into

convex field plots only. However, the method works in practice also for non-

convex field plots. The field reported in the results is not convex, but it can be

covered by this algorithm. Also, the algorithm can be extended to support most of

the field types by combining it for example the split-and-merge algorithm

(Oksanen et al. 2009) where the field is first divided into convex subfields. The

Spiral Connection method and path smoothing can also be used separately with

different path planning methods.

CONCLUSIONS

In this paper, the Spiral Connection method was proposed. With the proposed

method, the desired path is always feasible with respect to the constraints of the

steering system. The Spiral Connection method was applied to modify the well-

known shortest path principle, Dubins’ Spirals, such that the curvature of the

resulting path is continuous. The method can be applied also to smoothen or

constrain the curvature of an arbitrary path.

The proposed Spiral Connection method was implemented in an experimental

automatic navigation system, which used NMPC as a path tracking algorithm.

The results show that the method works both in theory and in practice.

ACKNOWLEDGEMENTS

A part of this research is done in the project Agromassi that is part of

FIMECC-program EFFIMA. A part of this research is also funded by the

Graduate School in Electronics, Telecommunications and Automation (GETA).

GETA is a post graduate programme offered jointly by five universities: Aalto

University School of Electrical Engineering, Tampere University of Technology

and the Universities of Oulu, Turku and Jyväskylä.

REFERENCES

Backman, J., Oksanen, T., Visala, A., 2010. Nonlinear model predictive trajectory

control in tractor-trailer system for parallel guidance in agricultural field

operations. In: Proc. Agricontrol 2010, Kyoto, Japan

Backman, J., Oksanen, T., Visala, A., 2012. Navigation system for agricultural

machines: Nonlinear Model Predictive path tracking. Computers and

Electronics in Agriculture. 82, p. 32-43.

Bochtis D.D. and Sørensen C.G. 2009. The vehicle routing problem in field

logistics part I. Biosystems Engineering, 104 (4), p. 447-457.

Bochtis D.D. and Sørensen C.G. 2010. The vehicle routing problem in field

logistics: Part II. Biosystems Engineering, 105 (2), p. 180-188

Fernandes, C., Gurvits, L. and Li Z. L. 1991. A variational approach to optimal

nonholonomic motion planning. Proceedings of the IEE Int. Conf. on Robotics

and Automation. p. 680-685.

Fleury, S., Souères, P., Laumond, J. and Chatila R. 1995. Primitives for

Smoothing Mobile Robot Trajectories. IEEE Trans. on Robotics and

Automation, 11 (3), p. 441-447.

Fraichard, T. and Scheuer, A. 2004. From Reeds and Shepp’s to Continuous-

Curvature Paths. IEEE Trans. on Robotics and Automation, 20 (6), p. 1025-

1035.

Dubins, L.E. 1957. On Curves of Minimal Length with a Constraint on Average

Curvature, and with Prescribed Initial and Terminal Positions and Tangents.

American Journal of Mathematics, 79 (3), p. 497- 516.

Oksanen, T. and Visala, A. 2009. Coverage Path Planning Algorithms for

Agricultural Field Machines. Journal of Field Robotics, 26 (8), p. 651-668.

Oksanen, T. 2007. Path Planning Algorithms for Agricultural Field Machines.

Doctoral dissertation. Helsinki University of Technology.

Parlangeli, D. and Idiveri, G. 2010. Dubins inspired 2D smooth paths with

bounded curvature and curvature derivative. Proceedings of the 7th IFAC

Symposium on Intelligent Autonomous Vehicles 2010. p. 216-221

Reeds, J.A. and Shepp, L.A. 1990. Optimal paths for a car that goes both forwards

and backwards. Pacific Journal of Mathematics, 145 (2), p. 367-393.

Yang, K. and Sukkarieh, S. 2010. An Analytical Continuous-Curvature Path-

Smoothing Algorithm. IEEE Trans. on Robotics, 26 (3), p. 561-568.

