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Abstract 
Digital agriculture frontier has been propelled by the pressing imperativeness to address the 
growing food demands, effects of climate change, and sustainable land management. Canada 
has made a substantial commitment to reducing greenhouse gas emissions by ~45% by 2030 
and to achieve net-zero by 2050. To support the attainment of these ambitious targets, our 
research delves into mapping spatio-temporal crop yield stability and land productivity. We utilized 
a multi-scale stacked machine learning approach to train a model using yield data from fields 
within ~5 m hectares spanning 5 years across Western Canada. Key model inputs included 
environmental-landscape explicit variables that heavily drives seasonal yields. Canola and wheat 
yields were predicted and subsequently used to classified arable lands into three productivity 
classes, i.e., stable-high, stable-low, and unstable. Validation assessment of predicted yields 
recorded temporal 𝑅𝑀𝑆𝐸𝑠 (𝑅!) ranging from 0.85 to 1.21 t ha-1 (0.56) for canola and 0.86 to 1.20 
t ha-1 (0.66) for wheat. Biomass accumulation, precipitation, peak and end of season (day of 
years), and landscape derivatives such as valley depth and topographic position index were 
consistent key explicit variables driving yield prediction across space and time. Productivity 
classes mapped for the Canadian prairies is fundamental to the development of data-driven 
precision agriculture strategies. Such efforts are imperative in the formulation of crop input 
prescriptions that target areas that provides high economic returns while less productivity areas 
can be managed with strategies that contribute to the advancement of marginal land conservation 
and restoration efforts. These efforts have the potential to sequester carbon, reduce the need for 
agrochemical inputs, enhance biodiversity, and still provide economic benefits to producers. 
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Introduction: Improved agriculture 
technologies and big data analytics have been 
identified as a potential solution to addressing 
the global food demands, mitigating changing 
climate effects, and promoting sustainable land 
use. However, this backdrop puts enormous 
pressure on limited arable lands resources to 
increase production per unit area, and thus has 
stimulated questions about stability and 
productivity of arable lands. To adapt and 
sustain improved crop production over time 
while diversifying agricultural systems to 
maximize the efficiency of farm inputs as well 
as seeking the commitment to reducing 
greenhouse gas emissions, agricultural 
systems’ stability is critical. For most 
producers, how agricultural stability drives 
economic predictability at low risk is crucial to 
optimizing farm inputs [1]. For this reason, 
finite arable land use needs continual 
intensification adaptations to optimize inputs to 
realize improved yields. Against this backdrop 
and gaps in the literature, we investigate (1) the 
robustness and validity of using big data 

analytics, artificial intelligence, and remote 
sensing data for productivity assessment and, 
(2) the synergetic use of long-term yield data 
and soil-landscape-climate in the assessment 
of crop stability [2]. It is therefore imperative to 
investigate at large scales to adequately 
influence production recommendations while 
devising agricultural systems that can 
effectively adapt to changing climate. 
 
Study area: The study was conducted within 
the prairie landscapes of Western Canada 
covering an area of ~5 m hectares from 2017 
to 2022. The selected pilot regions are limited 
to arable lands and are representative of the 
heterogeneities of the Canadian prairie. 
Grower’s harvest data we voluntarily 
contributed to this study. Yield datasets were 
corrected for sensor and operational, header 
swath and switch, travel time, flow, and reading 
cycles errors. Production practices used in the 
study area follows standard production in the 
northern Great Plains of North America, with 
mechanized dry land agriculture including 



mineral fertilization, and limited to no irrigation. 
In this study, yield data from ~1000 farmer 
fields were compiled for model calibration and 
validation. In this study, the two dominant 
crops, canola and wheat were considered. 
 
Methods: Modelling land productivity and yield 
stability were implemented under 5 main 
stages: (1) designing a yield-class ratings and 
spatially discretization yields into stratify sub-
samples, which reflects within-field variability, 
(2) preparation of dynamic and static explicit 
variables, (3) designing a regression task, (4) 
fitting an stacked-machine learning model 
based on yield classes, (5) spatial validation of 
predicted yields, and (6) using a measure of 
fuzziness to threshold predicted yields into 
productivity classes [3]. Models were trained in 
R with 𝑅𝑎𝑛𝑔𝑒𝑟 and ensembled using their 
squared errors as weights. All processes were 
executed on Compute Canada clusters and 
Google Earth Engine via R and Python 
programming languages. 
 
Results and Discussion: After an iterative 
leave-field-out validation, precipitation, crop 
phenological stages including peak and end of 
season, biomass accumulation, as well as 
landscape derivatives such as valley depth and 
topographic position index were consistently 
ranked the optimal variables across years in 
both yield classes and crop types. These 
observations corroborate expert knowledge 
documented for other landscapes [4].  
Predicted yields ranged from <1 t ha-1 to 9 t ha-

1. In correlating held-out fields with predicted 
yields, accuracies (𝑅𝑀𝑆𝐸𝑠; 𝑅!) for canola and 
wheat ranged from 0.85 to 1.21 t ha-1 (0.56), 
and 0.86 to 1.20 t ha-1 (0.66) respectively. 
Fig. 1 shows yearly predicted maps and their 
respective productivity classes for a field. 
Consistently across crops, 2021 had the lowest 
yields because of drought. Yield difference 
between unstable and stable-low were similar. 
Yields were generally stable and high. A 
distinctive observation for unstable regions is 
the time dependencies of within-field 
variabilities. This could be attributed to an 
interaction of crop to variables that drive within 
field variability. 
Generating a wider-scale model is to account 
for poor dispersion and limited to no discrete 
data points across an area. Conversely, it was 

observed that in sparse networks like those of 
this study, key regional-localized effects impact 
the global model’s extrapolation power. This 
finding thus suggests the inclusion of 
approaches such as area of applicability and 
dissimilarities for the prediction models. 
There were yield instability over years due to 
the negative skewed reference data across the 
study area. It is therefore important to expand 
our approach across multiple years, where 
retrospective predictions are considered. 

 
Fig. 1: Extracts of space-time predicted yields 
translated into three land productivity classes. 
 
Conclusion: The comprehensive use of big 
data analytics and crop-specific data to 
understand yield stability and land productivity 
to draw demonstrative conclusions for Western 
Canada is fundamental to the development of 
sustainable precision agriculture strategies. 
Based on our findings, growers can identify 
alternative usage for less productive areas, 
such as the cultivation of more diverse 
perennial forages on marginal areas, which 
has the potential to sequester carbon, reduce 
the need for agrochemical inputs, enhance 
biodiversity, and still provide economic benefits 
to producers and the environment. 
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