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Abstract. 
Water availability critically influences crop growth, health, and yield. Though accurate, traditional 
methods for assessing plant water status and water stress, such as leaf water potential (LWP) 
and relative water content (RWC), are destructive and unsuitable for large-scale monitoring. This 
study investigates the use of hyperspectral sensing combined with machine learning (ML) to 
predict water stress in wild blueberries non-destructively during drought treatment. A drought 
experiment was conducted on wild blueberries  in the summer of 2022, using a randomized block 
design with six genotypes under biochar and drought treatments. Physiological measurements of 
LWP and RWC were collected alongside hyperspectral data using the SVC HR-1024i sensor, 
covering the spectral range of 350-2500 nm. Various data mining, feature selection, and feature 
engineering techniques were implemented to address the imbalanced target variable and high 
dimensionality issues. We explored the optimal wavelength bands of spectral indices such as 
simple differences (Rλ1-Rλ2), simple ratios (Rλ1/Rλ2), normalized differences (|Rλ1-
Rλ2|/(Rλ1+Rλ2)), and MDATT ((Rλ3−Rλ1)/(Rλ3−Rλ2)) for both LWP and RWC. They also 
emerged as top predictors for predicting water stress, significantly contributing to the highest-
performing models. Our models, particularly Kernel Ridge Regression (KRR), XGBoost, and 
Gradient Boosting, demonstrated high predictive accuracy for LWP and RWC, with R-squared 
values ranging from 82% to 95% and normalized root mean square error (NRMSE) values 
between 7% and 12%. RWC regression predictions consistently outperformed LWP, with the KRR 
model for RWC achieving an R-squared of 95% and an NRMSE of 7.37%. For LWP, the Gradient 
Boosting model with selected non-linear features yielded an R-squared of 90% and an NRMSE 
of 9.47%. In the upper ranges of both target variables, models performed exceptionally well, with 
R-squared values surpassing 95% and NRMSE values below 3%. However, in the lower range 
of LWP, all models showed poor performance, with R-squared values below 50%. In contrast, the 
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lower region of RWC showed more promise, with the XGBoost model achieving a 68% R-squared 
value. Additionally, Random Forest classification models for binary targets demonstrated 
accuracy scores of 75% for RWC and 83% for LWP, indicating potential for refining water stress 
classification using appropriate thresholds. Future research could be done to explore further 
specific regression models tailored to distinct regions of water availability and to develop an 
automated neural vegetation index that could work across species and predict different 
physiological parameters. 

 
Keywords.   
Hyperspectral Reflectance, Leaf Water Potential (LWP), Relative Water Content (RWC), 
Spectral Indices, Machine Learning (ML), Wild Blueberries, Optimal Bands, Drought Treatment. 

 
  



  3 of 14 
 

Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

 

Introduction 
Water availability significantly influences crop growth, development, health, and yield (Taiz et al., 
2015). Water deficits can negatively impact crop physiology, resulting in reduced growth and 
overall production (Aladenola & Madramootoo, 2014; Rossini et al., 2013). It is crucial to 
accurately measure or estimate plant water status to make informed decisions about managing 
crop water stress and improving crop production. Although there are many traditional methods for 
determining soil and plant water status, most of these methods are destructive, labor-intensive, 
time-consuming, and not suitable for continuously monitoring large commercial fields with varying 
soil properties (Ihuoma & Madramootoo, 2017). For example, although leaf water potential (LWP) 
and relative water content (RWC) measurements can accurately indicate crop water status , they 
are destructive and labor-intensive.. 
While traditional destructive methods through field sampling provide accurate estimations of water 
stress indicators such as LWP and RWC, they are not always practical for estimating water stress 
over a large heterogeneous field. Non-destructive measurement of leaf spectral reflectance offers 
an instantaneous and practical method for assessing the water stress of plants. This method 
involves measuring the light reflected by leaves, which varies according to the water availability. 
By analyzing the spectral reflectance of the leaves, we can determine the water stress of the 
plants. This non-destructive approach is particularly useful for quick, accurate, large-scale 
vegetation health evaluations, making it a feasible solution for water status monitoring for 
precision irrigation in crop fields. 
Hyperspectral remote and contact sensing has emerged as a promising avenue for monitoring 
various plant parameters, including water stress, due to its non-destructive nature and ability to 
cover large spatial extents (Mulla, 2013). When plants are water-stressed for a prolonged period, 
their chlorophyll production might be reduced, which will result in decreased absorption in VIS 
(400–700 nm) and, thus, increased reflectance in the VIS region (Jensen, 2009; Jones & 
Vaughan, 2010). Due to the decrease in chlorophyll production, a blue shift (towards a shorter 
wavelength) of the red-edge position may be observed. These properties can be used to monitor 
the effects of water stress on vegetation. The water content in leaves influences light scattering. 
Increased scattering due to high water content generally enhances the diffusion and transmittance 
of leaves, which leads to reduced reflectance in the NIR (700 -1200 nm) and SWIR (1200-2500 
nm) in well-watered leaves compared to reduced water leaves (Jensen, 2009; Jones & Vaughan, 
2010). So, water-stressed leaves may show overall high reflectance compared to well-water 
leaves. However, if the stress is prolonged and leads to a reduction in leaf area and biomass, the 
reflection in the NIR region may decrease, and NIR is sensitive to biomass and canopy density 
(Jensen, 2009; Jones & Vaughan, 2010). Overall, hyperspectral sensing is promising as a non-
destructive water status estimation method. However, the challenge lies in developing water 
stress prediction models that can accommodate the inherent variability in structural and 
physiological properties across different crops. 
The wild blueberry crop, with its diverse genotypes grown in semi-natural systems, poses a 
significant challenge for precision water management. To tackle this, we have delved into the 
application of machine learning (ML) techniques for non-destructive hyperspectral sensing-based 
water stress detection in wild blueberries. Our objective was to assess the performance of ML 
models in accurately predicting water stress during drought treatment, taking into account the 
unique characteristics and variability inherent in wild blueberry genotypes. This research is a 
significant step towards advancing water stress monitoring applications in agriculture, particularly 
in the context of wild blueberries, by bolstering the robustness and adaptability of water stress 
prediction models through the use of hyperspectral sensing and machine learning techniques. 

Materials and Method 
In the summer of 2022, a drought experiment was conducted on wild blueberries at Rogers Farm 
Greenhouse in Old Town, Maine, USA (Longitude: -68.69° N, Latitude: 44.93° W). The experiment 
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utilized a randomized block design with two factors (biochar treatment and drought treatment) 
and six genotypes implemented in pots within the greenhouse. The experiment spanned from 
July 3rd to August 2nd, with data collection occurring every three days or longer, based on 
measurements of leaf water potential (LWP) and relative water content (RWC), and the rate of 
plant drying. The control crop was irrigated twice a day, and the drought treatment crop underwent 
natural dry-down by withholding irrigation. The control crops were irrigated in the morning and 
early evening using irrigation lines. 

Plant Physiological Measurements  
Physiological data was collected from different genotypes and soil blocks with various crop 
irrigation treatments, with the target variables being LWP and RWC. At least 12 leaf samples were 
taken on each sampling date. All samples were collected between 11:00 and 14:00, within a 30-
minute window, and were then placed in sealed bags, kept in a dark cooler, and transported to 
the University of Maine Plant Physiology Laboratory within 10 to 15 minutes of collection. Midday 
LWP was measured using a leaf pressure chamber (Model 1505D; PMS Instrument Company, 
Corvallis, OR USA). RWC measurements were calculated using the formula below. 

RWC(%) 	= 	 !"#!
$!"#!

    

where W = sample fresh weight, TW = sample turgid weight, DW = sample dry weight. 
Fresh leaf samples were initially weighed to determine the leaf sample weight (W). Subsequently, 
the samples were hydrated to full turgidity for 4 hours under normal room light and temperature. 
After this hydration period, the samples were taken out of the water, gently dried with filter paper 
to eliminate surface moisture, and promptly reweighed to establish the fully turgid weight (TW). 
Following this, the samples underwent oven-drying at 80°C for 72 hours and were then weighed 
to ascertain the dry weight (DW). 

Hyperspectral Reflectance Measurements 
Hyperspectral data for each leaf sample were collected in coordination with physiological 
measurements using a handheld hyperspectral sensor (SVC HR-1024i). Spectral measurements 
were obtained prior to any physiological assessments. The SVC HR-1024i operates over a 
spectral range of 350-2500 nm.    

Data Preprocessing 
For our research, we employed the 'specdal' Python package to parse individual SIG-formatted 
files containing hyperspectral data, subsequently organizing them into a structured data frame. 
This hyperspectral data was then integrated with corresponding Leaf Water Potential (LWP) and 
Relative Water Content (RWC) datasets using shared columns such as “Date”, “Drought Status”, 
“Genotype”, “Block”, and “Biochar Treatment”. 
Regarding the LWP target variable, our dataset includes 121 observations with the 'no biochar' 
treatment, of which 53 samples have a 'drought' status. For the RWC target variable, the dataset 
comprises 176 samples across both treatment groups, with 38 samples displaying a 'drought' 
status, all of which belong to the 'no biochar' treatment group. Each dataset contains 994 columns, 
representing reflectance rates across 994 wavelength bands ranging from 339 nm to 2516 nm. 
This research aims to investigate the relationship between spectral characteristics and the LWP 
and RWC of wild blueberries under drought conditions. To achieve this, we selectively refine the 
training dataset to include only leaves experiencing drought stress without any biochar treatment. 



  5 of 14 
 

Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

 

Research Methodology 

 
Figure 1: Scheme of methodology used in this study 

In this study, we employed a systematic approach to extract refined training datasets. After many 
experiments on various approaches, we have come up with the appropriate method which brings 
the best results in this data field. Initially, we conducted outlier detection and exploratory data 
analysis to clean the raw data and identify potential issues that could hinder subsequent model 
training. Following this, we performed feature selection and feature engineering to create various 



  6 of 14 
 

Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

 

subsets of features and develop new training datasets based on spectral vegetation indices. 
Further details are presented in Figure 1. 

Exploratory Data Analysis 
Figure 2 illustrates the changes in average Leaf Water Potential (LWP) and Relative Water 
Content (RWC) over ten days of drought treatment. The data reveal an overall downward trend 
throughout the period, with a slight increase around the two-thirds mark (7/21/22) before 
experiencing a significant decline in the final days. 

Figure 2: Changes in (a) Leaf Water Potential (LWP) and (b) Relative Water Content (RWC) of wild blueberry plants during 
the drought treatment 

Figure 3 presents the mean reflectance rates across all wavelengths within the 339 nm to 2516 
nm range over a ten-day period. The plot reveals a significant divergence in the trend on the final 
day (7/30/22), as highlighted. 

 
Figure 3: Time series of reflectance rate (%) of wild blueberry leaves during the drought treatment 

We aim to examine the noise within the training data, which may affect the model training and 
prediction processes. Figure 4 shows the mean reflectance across all wavelength bands during 
the drought period. Our analysis indicates that there is no substantial noise within this dataset. 
We applied the Savitzky-Golay filter, Gaussian kernel smoother, and Wiener filter to assess their 
impact on noise reduction (see Appendix). However, due to the inherently low noise in the dataset, 
these filters did not significantly transform the original data. 
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Figure 4: Mean reflectance rate (%) by Wavelength Band (nm) 

Handling imbalanced continuous target variables 
Managing a deeply imbalanced continuous target variable in machine learning requires robust 
strategies to ensure effective model learning. Imbalanced data can lead to biased models that fail 
to generalize well. This study addressed this issue by combining regression and classification 
techniques. 
Initially, we trained regression models directly on the continuous target variables. However, due 
to the severe imbalance, we applied a binning method to discretize the continuous target variable 
into distinct bins based on specific thresholds. This discretization transformed the regression 
problem into a classification task, simplifying handling imbalanced data (Fawcett & Provost, 
1997). 
By converting the continuous target into bins, we trained classification models to predict the bin 
each observation belongs to. After classification, we applied secondary regression models to 
predict the exact value within each bin. This two-step approach, classification followed by 
regression, improved predictive accuracy and robustness (Hastie et al., 2009). 
We selected thresholds that divided the data into more equitable bins to ensure balanced sample 
distribution across bins. For LWP, the threshold was -0.7 MPa; for RWC, it was 80%, effectively 
separating the data into high and low regions for each target and with a relative balance of the 
number of samples for training (Figure 5). 
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Feature Selection 
Hyperspectral sensors capture data across numerous narrow spectral bands with minimal 
separation, leading to high collinearity. This complicates statistical and machine-learning 
applications, making model estimates unreliable and unstable (Hastie et al., 2009). Additionally, 
the large number of predictor variables (wavelength bands) can cause overfitting, capturing noise 
instead of the true signal and reducing model generalizability (Guyon & Elisseeff, 2003). Effective 
feature selection strategies are crucial to reduce dimensionality while preserving informative 
features for model training (Fodor, 2002). 

To address these challenges, we implemented KBest Feature Selection, a type of filter method 
for feature selection. This technique ranks features based on their statistical significance in 
relation to the target variable. We employed both linear methods (such as the ANOVA F-test) 
and non-linear methods (such as mutual information) to capture a wide spectrum of relevant 
features. By selecting the top k features, we aimed to retain those with the highest predictive 
power while eliminating redundant or irrelevant ones (Chandrashekar & Sahin, 2014; Saeys et 
al., 2007). We generated distinct subsets of features that were subsequently used for model 
training for each feature selection method. 

Feature Engineering 
Feature engineering is critical for enhancing the performance of machine learning models, 
particularly with complex datasets like hyperspectral data. This study focused on identifying the 
optimal wavelength bands for several vegetation indices frequently used to assess chlorophyll 
and water content. These indices include Single Difference (SD), Single Ratio (SR), Normalized 
Difference (ND), and the Modified Datt Index (MDATT). 
To find the optimal wavelength bands, we analyzed their relationship with LWP and RWC target 
variables using Pearson’s Correlation Coefficient. This helped us determine which combinations 
of wavelength bands had the highest correlation with LWP and RWC. Using NumPy, we 
quantitatively identified these optimal bands, ensuring our models utilized the most informative 
features. The results in Table 1 highlight the optimal combination of bands that exhibited the 
strongest correlations. 

Figure 5: Binning method for the imbalanced continuous targets (a) LWP with threshold -0.7 MPa (b) RWC with threshold 80% 
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Table 1: Computed optimal bands for spectral indices 

Spectral Index Formula Computed Optimal Bands (nm) 

LWP Data   

SD Rλ1 −Rλ2 R2188, R2245 

SR Rλ1/ Rλ2 R1756, R1749 

ND |Rλ1 - Rλ2| / (Rλ1 + Rλ2) R1749, R1756 

MDATT (Rλ3 - Rλ1)/ (Rλ3 - Rλ2) R1428, R1848, R1852 

RWC Data   

SD Rλ1 −Rλ2 R1938, R1941 

SR Rλ1/ Rλ2 R2318, R2334 

ND |Rλ1 - Rλ2| / (Rλ1 + Rλ2) R354, R1894 

MDATT (Rλ3 - Rλ1)/ (Rλ3 - Rλ2) R837, R842, R892 

 

Figure 6: Contour map of correlation score between (a) SD (b) SR (c) ND indices and LWP 

Figure 7: Contour map of correlation score between (a) SD (b) SR (c) ND indices and RWC 
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Previous studies have made significant strides in developing spectral indices tailored to various 
aspects of plant health. Building upon these advancements, our research focuses on enhancing 
these indices by integrating them with optimized vegetation indices (SD, SR, ND, and MDATT). 
This integration aims to create a unique dataset that complements the training process. Common 
spectral indices for water content estimation include the Disease Water Stress Index (DWSI), 
Moisture Stress Index (MSI), Leaf Water Vegetation Index 1 & 2 (LWVI), Normalized Difference 
Infrared Index (NDII), Normalized Difference Water Index (NDWI), Water Band Index (WBI), and 
Normalized Multi-band Drought Index (NMDI) (Table 2). 

Table 2: Other spectral indices used in this study 

Spectral Index Formula References 

Disease Water Stress Index (DWSI) (R802 -R547)/(R1657+R682) Galvao  et al., (2005) 

Moisture Stress Index (MSI) R1599/R819 Ceccato et al., (2001) 

Leaf Water Vegetation Index 1 (LWVI1) (R1094 -R983)/(R1094+R983) Galvao et al., (2005) 

Leaf Water Vegetation Index 2 (LWVI2) (R1094 -R1205)/(R1094+R1205) Galvao et al., (2005) 

Normalized Difference Infrared Index (NDII) (R819 -R1649)/(R819+R1649) Hardisky et al.,(1983) 

Normalized Difference Water Index (NDWI) (R857 -R1241)/(R857+R1241) Gao (1995) 

Water Band Index (WBI) R970/R900 Penuelas et al., (1993) 

Normalized Multi-band Drought Index (NMDI) (R860 -(R1640 -R2130))/(R860+(R1640 -R2130)) Jackson et al., (2004); Lu et al., 
(2018) 

Model Selection and Training 
Our objective was to develop a robust series of base learners by leveraging various machine 
learning models on diverse hyperspectral datasets. We delved into both linear and non-linear 
regression relationships between hyperspectral bands and target variables, LWP and RWC. We 
incorporated model-based dimensionality reduction and regularization techniques to enhance 
model performance and handle high-dimensional data challenges. Furthermore, ensemble 
models were employed to improve predictive accuracy and robustness. 
Due to the limited sample size, we conducted a thorough 90/10 train-test split on each dataset to 
ensure rigorous evaluation of the models. We utilized the "Optuna" package for efficient 
parameter tuning across all models, streamlining the optimization process. Subsequently, a 
comprehensive analysis of model performance was conducted, highlighting the top-performing 
models across all relevant datasets. Detailed results are presented in Tables 3 and 4, showcasing 
the optimal models for each dataset. 
Drawing from insights from prior studies on hyperspectral sensing data analysis of plants, Kernel 
Ridge Regression (KRR) and Partial Least Squares Regression (PLSR) are identified as 
promising candidate methods. These methods have demonstrated efficacy in capturing complex 
relationships between hyperspectral data and plant physiological parameters (Mohd et al., 2022; 
Ge et al., 2016; Yeh et al., 2016; Weber et al., 2012; Vigneau et al., 2011; Mo et al., 2015; 
Rapaport et al., 2015; Nguyen and Lee, 2006). 

Results and Discussion 
In evaluating prediction metrics of regression models, it became evident that RWC data 
outperformed LWP data, indicating that spectral bands present a more effective way of predicting 
RWC than LWP. Among the models assessed, Kernel Ridge Regression (KRR), XGBoost, and 
Gradient Boosting emerged as optimal choices for both the complete datasets of LWP and RWC, 
featuring original continuous targets. These models consistently achieved coefficient of 
determination (R-squared) values ranging from 82% to 95%, highlighting their robust predictive 
capabilities. Concurrently, the normalized root mean square error (NRMSE) values, falling within 
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the range of 7% to 12%, underscored the accuracy and reliability of these models. 
With the full range of LWP (-7 to 0 MPa), the subset of non-linear selected features yielded the 
highest R-squared result (89.6%) and lowest NRMSE (9.47%) on the Gradient Boosting model. 
The top three bands for prediction are 355nm,1894nm and1898nm. 
With the full range of RWC (17 to 100), the vegetation indices dataset has the highest prediction 
performance with the KRR model, yielding an R-squared of 94.9% and NRMSE of 7.37%. The 
top vegetation indices predictors are LWVI1, ND, and MSI. The original dataset also performed 
very well, with 92.2% R-squared and 9.17% NRMSE. The top 3 corresponding predictors are 
bands 373-342-357 nm. 
Upon closer examination, particularly within the upper region – class 1 (beyond -0.7 MPa of LWP 
and beyond 80% RWC) of both target variables, the results exhibited remarkable performance, 
boasting R-squared values surpassing 95% and maintaining NRMSE values below 3% across 
various models such as PLSR, KRR, Elastic Net, and XGBoost. However, contrasting patterns 
emerged within the lower region – class 0 of LWP (under -0.7 MPa), where all models yielded 
poor performance, consistently registering R-squared values below 50%. Consequently, these 
outcomes were excluded from the tabulated results due to their limited predictive utility. 
Conversely, the lower region of RWC (under 80%) showcased more promising outcomes, with 
the XGBoost model achieving a commendable 68% R-squared value. This disparity in 
performance between the lower regions of LWP and RWC indicates the nuanced relationships 
between spectral indices and plant physiological parameters, highlighting the importance of 
targeted model development and refinement to address specific areas of interest and variability 
within plant health assessment. 

 Table 3: Regression models with high results 

Dataset Regression 
Model R-squared RMSE NRMSE 

(%) 
Top 3 band predictors 
(nm) in the desc. order 

LWP Full Data      

Indices_df XGBoost 0.821 0.846 12.44% 
SR 
SD 
WBI 

nonlinear_selected_features Gradient Boosting 0.896 0.644 9.47% 
R1894 
R355 
R1898 

LWP Class 1 (> -0.7 MPa)      

indices_df_1 PLSR 0.973 0.017 2.42% 
ND 
SD 
SR 

indices_df_1 Elastic Net 0.955 0.022 3.13% 
SR 
ND 

NDII 

indices_df_1 KRR 0.969 0.018 2.60% 
ND 
WBI 

NMDI 

indices_df_1 XGBoost 0.989 0.011 1.55% 
SD  
SR 

LWVI1 

RWC Full Data      

Original_df KRR 0.922 7.616 9.17% 
R373 
R342 
R357 

Indices_df KRR 0.949 6.125 7.37% 
LWVI1 

ND 
MSI 
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linear_selected_features KRR 0.878 9.515 11.45% 
R1894 
R1891 
R1887 

nonlinear_selected_features KRR 0.887 9.173 11.04% the subset has only 2 
bands: R409 R2507 

RWC Class 1 (>80 RWC)      

Original_df_1 PLSR 0.959 0.817 1.41% 
R341 
R2516 
R357 

Original_df_1 Elastic Net 0.999 0.092 0.16% 
R2516 
R418 
R2484 

indices_df_1 PLSR 0.950 0.899 1.55% 
SD 
ND 
SR 

indices_df_1 Elastic Net 0.930 1.068 1.84% 
SD 
ND 
SR 

indices_df_1 KRR 0.974 0.648 1.12% 
LWVI2 
NDWI 
MSI 

indices_df_1 Gradient Boosting 0.817 1.723 2.97% 
SR 
SD 
ND 

indices_df_1 XGBoost 0.999 0.110 0.19% 
SR 
SD 
ND 

RWC Class 0 (<80 RWC)      

indices_df_0 XGBoost 0.680 2.487 12.44% 
MSI 
ND 
SD 

 
Additionally, the Random Forest classification models for binary target variables demonstrate 
promising performance, achieving accuracy scores of 75% for RWC and 83.3% for LWP binary 
data, as detailed in Table 4. These results highlight the potential to refine classification predictions 
of water stress levels using appropriate thresholds. There is an opportunity to explore further 
specialized regression models tailored to specific regions of water availability, enhancing the 
precision of water stress assessments. 

Table 4: Classification model results with binary target variables 

Dataset Classification 
Model Accuracy Top 3 band predictors 

(nm) in the desc. order 

LWP Binary Data (0, 1) RF Classifier 0.833 
R2457 
R597 
R613 

RWC Binary Data (0, 1) RF Classifier 0.75 
R2499 
R358 
R586 

Conclusion 
Our study demonstrated the efficacy of hyperspectral sensing in assessing water stress through 
spectral reflectance analysis. By leveraging various machine learning regression models trained 
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on a comprehensive set of LWP and RWC targets, we achieved robust predictions for water 
availability and a clear comparison of these two water status variables in prediction models. 
Models such as KRR, XGBoost, Gradient Boosting, PLSR, and Elastic Net consistently exhibited 
high R-squared values, indicating their strong predictive capabilities for water stress levels.  
This exemplary performance across diverse regression models underscores the effectiveness of 
spectral bands in capturing plant physiological traits, particularly in regions associated with 
optimal plant health. Our approach addressed challenges like imbalanced data and high-
dimensional feature spaces through binning, feature selection, and feature engineering 
techniques. By transforming continuous target variables into discrete regions, we explored the 
potential of combining classification and regression for water stress prediction, suggesting further 
research on applying specific regression models to distinct ranges of water availability indices. 
Additionally, we enhanced model performance and generalizability by selecting informative 
spectral features and leveraging both non-optimized vegetation indices from previous studies and 
optimized spectral indices from this study. 
Our findings highlight the potential of integrating hyperspectral sensing with machine learning for 
precise water stress monitoring in agriculture, especially for challenging crops like wild 
blueberries. Further refinement and validation of our models can facilitate practical 
implementation in real-world agricultural settings, fostering sustainable water management 
practices and enhancing crop security. As potential future work, incorporating the neural 
vegetation index and up-scaling the models for UAV-based hyperspectral data could significantly 
enhance our monitoring capabilities. This would allow for more precise and scalable water stress 
assessments across larger agricultural fields, enabling real-time decision-making and further 
advancing the practical applications of our research. 
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