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Abstract.  
Field scale yield estimation is labor-intensive, typically limited to a few samples in a given field, 
and often happens too late to inform any in-season agronomic treatments. In this study, we used 
meteorological data including growing degree days (GDD), photosynthetic active radiation (PAR), 
and rolling average of rainfall combined with hybrid relative maturity, organic matter, and weekly 
growth stage information from three small-plot research locations to predict corn yield.  Daily time-
series data was transformed from the time domain to the growth stage domain and subsequently 
trained using a Long Short-Term Memory (LSTM) machine learning model. The results showed 
a mean absolute error (MAE) of 22.6 bu/acre on a five-fold cross validation set.  When trained 
with location-specific data, the model achieved an MAE of as low as 19.2 bu/acre. 
Keywords. 
Precision Agriculture, Multimodal Data, Machine Learning, Unmanned Aerial Systems, Crop 
Phenotyping 
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1. Introduction 
Corn is the largest crop in terms of acreage in the United States. It is extensively used in food, 
feed, and fuel products. Monitoring and estimating corn yield accurately in-season at the field 
scale level can help to inform the grain marketing efforts of farmers. Furthermore, estimates of 
yield during the growing season can inform the profitability of agronomic treatments such as 
nitrogen and fungicide applications. 
Corn yield can be estimated manually using yield components such as the number of ears, 
number of kernel rows, and kernel weight (Licht, 2017) obtained from the field. Calculating these 
parameters manually is a time-consuming process. The labor-intensive nature of in-field yield 
estimation typically limits the sample size to a small portion and happens too late in the season 
to inform the profitability of any agronomic treatments. 
However, with advancements in remote and proximal sensing capabilities and machine learning 
techniques, there is an opportunity to predict in-season crop yield based on the current year's 
weather and soil inputs which can provide in-season yield estimates sooner in the growing season 
and with greater accuracy. This paper takes a step towards the goal of in-season yield estimation 
by outlining an approach to accurately estimate yield from the combination of meteorological and 
phenological data from the prior year. 

2. Related Works 
In past studies, crop yield models mainly focused on estimating yield based on data acquired 
through optical, multispectral, and weather sensors. However, there are limited studies that 
estimate yield based on growth stage. The following sections briefly explain some commonly used 
methods for predicting crop yield. 

2.1 Machine Learning Models 
Various machine-learning strategies are used in monitoring within-field yield variability using 
satellite optical data namely Sentinel-2 data (Crusiol et al. 2022). High accuracy of crop yield was 
observed when the images at the R5 phenological stage of soybean were considered in support 
vector regression (SVR) and partial least square regression (PLSR) models demonstrating the 
importance of the crop phenological stage in crop yield estimation. However, the study did not 
account for the environmental conditions of the field which makes it difficult for generalization. 
Similarly, another study integrated a deep learning and machine learning model for estimating 
corn yield. This integrated network model achieved an RMSE of 6.298 in measuring the crop yield 
index indicating the capabilities of deep learning models (Kuwata and Shibasaki 2015).  
Jiang et al. (2020) estimated corn yield at the county level using a combination of meteorological 
data and satellite-based vegetation indices. An LSTM model was developed and was found to 
outperform least absolute shrinkage and selection operator (LASSO) and random forest (RF).  
The LSTM model utilized five different growth phases as inputs to the LSTM model and was able 
to achieve RMSE of 1.48 Mg/ha (23.5 bu/acre) with sample size of n = 6,592 across 10 years. 
Shook et al. (2021) estimated soybean yield using an LSTM with temporal attention approach 
based on data from Uniform Soybean Trust (UST) resulting in a dataset of n = 103,365 and 
achieving a mean absolute error (MAE) of 6.17 bu/acre using meteorological variables.  This 
corresponds to an approximately 14% error in yield given that the range of yield in the study was 
between 33 and 55 bu/acre. 
These studies indicate that machine learning models can be effective in estimating yield. 

2.2 Process-based Models 
There exist several process-based models such as Decision Support System for Agro-
Technology Transfer (DSSAT), Agricultural Production Systems sIMulator (APSIM), and World 
Food Studies (WOFOST) for estimating crop yield under various crop and weather conditions 
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(Sargun and Mohan 2020)(Huang et al. 2019). These models simulate crop growth development 
and yield based on genetic features and meteorological conditions. 
Even though these models can be tuned and calibrated to predict crop yields accurately, they can 
be very crop and field-specific making it difficult to replicate them for other crop fields without 
further tuning and calibration. Furthermore, these models have not completely accounted for the 
relationship between meteorological conditions and crop growth stage timing which is an 
important factor for determining crop yield (Zhou et al. 2017). Considering the timing of growth 
stage in combination with meteorological conditions including temperature, precipitation, and 
photosynthetic active radiation can make yield predictions more robust and generalized. 

2.3 Model-guided machine learning 
Model-guided machine learning uses the outputs from a process-based model as inputs into a 
machine learning model. One of the studies implemented a framework for monitoring in-season 
crop phenology using a biophysical crop model (DSSAT) for guiding neural networks (Worrall et 
al. 2023). The results showed that neural networks guided with DSSAT estimated the progression 
of phenological stages better compared to the unguided and crop model-only method. 

3. Data Sources and Types 
Figure 1 shows data types collected in this study. 

 
Figure 1:  Summary of Data Types 

3.1 Data Sources 
The data sources underpinning this effort originate from three Ohio State agricultural research 
stations geographically dispersed across Ohio. They include Western Agricultural Research 
Station in Clark County, Northwest Agricultural Research Station in Wood County, and Wooster 
Campus in Wayne County. Each site included 80 plots. The experiment was a split-plot 
randomized complete block design with four replications of each treatment. Main plot factor 
included five planting dates spaced approximately every two weeks from mid-April to mid-June. 
The subplot-factor was four different hybrids (H1, H2, H3, H4) of varying relative maturities (100, 
107, 111, and 115 days). Each replicate included a border plot on both ends of the block to reduce 
any edge-of-field effects on the measured plots. Furthermore, yield measurements were based 
on the center two rows (out of four). The research plots were managed according to agronomic 
best management practices (Thomison et al. 2017) outside of the main plot and subplot factors. 
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Figure 2: Plot Layout insert from the Western Research site (PD = Planting Date, H = Hybrid, B = Border Plot). 

Each plot was 10 feet wide, configured as four rows at 30-inch spacing spanning approximately 
30 feet long or longer at each location. The plots were systematically designated using a 3-digit 
numbering system: 101-120, 201-220, 301-320, and 401-420. A visual representation of the plot 
layout for Western Corn is shown in Figure 2. 

3.2 Data Types 
3.2.1 In-Situ Soil and Meteorological Sensing Data  

An array of soil sensors was deployed at two depths, specifically at 30 cm and 60 cm, within the 
plots for Planting Date 2 and 4 at all three research locations. Additionally, one Apogee SQ-521 
photosynthetic active radiation (PAR) sensor and one Meter ATMOS 14 weather station were 
installed at each of these research sites. The weather station collected temperature, relative 
humidity, vapor pressure, and barometric pressure in the crop canopy.  
The data collected by these sensors was aggregated by a total of six ZL6 data loggers, with two 
loggers allocated at each research site. These loggers were connected to the Meter Group’s 
Zentra Cloud, a data management and visualization platform. The ZL6 data loggers were 
configured to record sensor data at 30-minute intervals and upload data to the Zentra cloud hourly.  
Data visualization was available through user-configurable dashboards on the website and data 
was also accessible via an application programming interface (API). A Python script was 
employed to interface with the Zentra Cloud application programming interface (API) to retrieve 
the data and aggregate it into a local database. 
3.2.2 Weather Station Data  

At each of the research locations, an Ohio State University (OSU) weather station collects 
precipitation, wind speed, and air temperature at multiple heights, which is accessible at 
weather.cfaes.osu.edu. In addition, the website also provides calculated daily values such as 
Growing Degree Days (GDD). The accumulation of GDD over the growing season is widely used 
in predicting corn growth and development. 
3.2.3 Manually Labeled Data  

Site visits were conducted weekly at each location by personnel from the Department of 
Horticulture and Crop Science (HCS). These individuals possessed expertise in the classification 
of crop growth stages.  Furthermore, the final yield of each plot was collected at harvest. 

3.3 Analysis of Yield Data 
Table I provides a summary of yield information across the three research locations organized by 
planting date and hybrid.  Note that Hybrid 1 for Planting Dates 1,2, and 3 for Northwest Research 
Station were removed from the dataset due to raccoon infestation that affected yield 
measurements. 

PD3 PD3 PD3 PD3 PD3 PD3 PD2 PD2 PD2 PD2 PD2 PD2
Rep 4 H2 H1 H4 H3 H2 H1 H3 H4

B 401 402 403 404 B B 405 406 407 408 B

PD2 PD2 PD2 PD2 PD2 PD2 PD4 PD4 PD4 PD4 PD4 PD4
Rep 3 H3 H4 H2 H1 H2 H1 H3 H4

B 301 302 303 304 B B 305 306 307 308 B

PD4 PD4 PD4 PD4 PD4 PD4 PD5 PD5 PD5 PD5 PD5 PD5
Rep2 H1 H3 H2 H4 H2 H1 H3 H4

B 201 202 203 204 B B 205 206 207 208 B

PD1 PD1 PD1 PD1 PD1 PD1 PD2 PD2 PD2 PD2 PD2 PD2
Rep1 H1 H2 H3 H4 H1 H2 H3 H4

B 101 102 103 104 B B 105 106 107 108 B
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Table 1. Summary of yield in bu/acre by location, hybrid, and planting date 

 

4. Data Preparation 
Figure 3 summarizes the data processing steps involved: 

 
Figure 3: Summary of data processing steps 

The data cleaning step involved combining the 30-minute resolution in-plot sensors with the daily 
resolution on-site weather station resolving two missing data issues: 

• The photosynthetic active radiation (PAR) sensors were not available for installation until 
mid-June meaning that data from the early part of the growing season was not available 
for these sensors.  However, the on-site weather station included a measurement for 
solar radiation. Using the data from mid-June to the end of the growing season where 
PAR and solar radiation were measured concurrently, a linear relationship was 
established which was then used to impute PAR values prior to mid-June. 

• The Wooster on-site weather station had a gap in recorded data where values from 24-
30 August 2023 were not recorded. These were imputed from the Daymet dataset 
(Thornton, et al. 2023). 

Furthermore, additional calculated columns were created with previous 7, 14, 21, and 28-day 
rolling averages of precipitation to be used as a proxy for plant available water. 
The growth stage labels were originally recorded as alphanumeric values corresponding to 
vegetative and reproductive growth stages commonly used by agronomists (Abendroth et al. 
2011). These were converted to integers ranging from -1 to 16 via a Python dictionary and growth 
stages ‘V9’ to ‘V18’ were combined in order to achieve growth stages of similar duration as shown 
in Figure 4. The integer (-1) represented the period from planting date to ‘VE’. 

Planting 
Date

h1
yield

h2
yield

h3
yield

h4
yield

Avg 
yield by 
Planting 

Date

h1
yield

h2
yield

h3
yield

h4
yield

Avg 
yield by 
Planting 

Date

h1
yield

h2
yield

h3
yield

h4
yield

Avg 
yield by 
Planting 

Date
pd1 149 192 207 194 185 NA 235 245 249 243 188 212 214 203 204
pd2 162 189 179 142 168 NA 240 236 247 241 228 229 214 224 224
pd3 135 144 124 156 140 NA 246 247 254 249 190 201 198 180 192
pd4 218 268 216 237 235 198 203 195 202 199 199 203 196 193 198
pd5 225 224 223 237 227 186 176 166 173 175 174 189 200 187 188
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Figure 4 

With knowledge of the planting date for each plot, the data transformation step involved creating 
a dataframe for each plot at each location where the meteorological data began on the planting 
date.  An additional column for growth stage was added and populated as an integer on each 
date where a growth stage observation was made, typically weekly as illustrated in Table II.  Daily 
growth stage values were achieved by linearly interpolating between the weekly growth stage 
observations and converting resulting values to integers. 

Table 2. Excerpt of growth stage labels 

 
With a dataframe for each plot consisting of input values of GDD, PAR, several rolling averages 
of precipitation, and daily growth stage values, the next step was to transform each dataframe 
from the time domain to the growth stage domain.  This would ensure that each plot had identical 
sequence lengths of 18 rows (-1 to 16) and would be conducive to machine learning approaches. 
This transformation was accomplished through functions available in the pandas library in Python.  
For all the rows in a dataframe corresponding to a particular growth stage, the sum of GDD and 
PAR was calculated along with the mean of the 7, 14, 21, and 28-day rolling averages of 
precipitation.  Figure 5 shows an example of one of the dataframes that has been transformed to 
the growth stage domain. 
The resulting plot-level dataframes stored in Python dictionaries were then flattened into 
dataframes by location (Northwest, Western, Wooster) and into a combined dataframe that 
included all 3 locations. Each location had different organic matter levels which were introduced 
as an additional column (independent variable) into the dataset for Western (4.36%), Northwest 
(3.24%), and Wooster (2.23%). Planting date labels (pd1-pd5), hybrid labels (1-4), and hybrid 
values (100, 107, 111, 115) were introduced as columns (independent variables) in the flattened 

# Dictionary to map alphanumeric growth stages to integers 
gs_corn_dict = { 
    'VE':  0, 'V1': 1, 'V2': 2, 'V3': 3, 'V4': 4, 'V5': 5, 'V6': 6,  
    'V7': 7, 'V8': 8, 'V9': 9, 'V10': 9, 'V11': 9, 'V12': 9,  
    'V13': 9, 'V14': 9, 'V15': 9, 'V16': 9, 'V17': 9, 'V18': 9, 
'VT': 10,  
    'R1': 11, 'R2': 12, 'R3': 13, 'R4': 14, 'R5': 15, 'R6': 16 
} 

Planting Date Number PD1 PD1 PD1 PD1 PD2 PD2 PD2
Hybrid H1 H2 H3 H4 H1 H2 H3

date 101 102 103 104 105 106 107
5/5/23 VE VE VE VE
5/10/23 V1 V1 V1 V1 VE VE VE
5/17/23 V2 V2 V2 V2 V1 V1 V1
5/24/23 V3 V4 V4 V4 V3 V3 V3
5/31/23 V5 V5 V5 V5 V4 V5 V5
6/7/23 V6 V7 V7 V7 V5 V6 V6
6/14/23 V7 V7 V7 V7 V6 V7 V7
6/21/23 V7 V8 V8 V8 V7 V7 V8
6/26/23 V8 V9 V9 V10 V8 V8 V8
7/6/23 V13 V14 V13 V13 V10 V11 V11
7/13/23 R1 R1 R1 VT R1 V16 V15
7/19/23 R2 R2 R2 R2 R1 R1 R1
7/24/23 R2 R2 R2 R1 R2 R2 R2
8/2/23 R4 R4 R3 R3 R3 R3 R3
8/8/23 R4 R4 R4 R4 R4 R4 R4
8/15/23 R5 R5 R4 R4 R4 R4 R4
8/23/23 R5 R5 R5 R5 R5 R5 R5
9/1/23 R5 R6 R6 R6 R5 R6 R6
9/6/23 R6 R6 R6 R6 R6 R6 R6
9/14/23 R6 R6 R6 R6 R6 R6 R6
9/21/23 R6 R6 R6 R6 R6 R6 R6
9/27/23 R6 R6 R6 R6 R6 R6 R6
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dataframes both for training inputs and to separate the dataset into training and test sets. Finally, 
the yield in bu/acre was included as a column (dependent variable) in each dataframe. The 
dataset included a total of 228 sequences of data (Western - 80, Wooster - 80, Northwest – 68). 

 
Figure 5: Dataframe from Plot 101 at Western Research Station 

5. Model Architecture and Configuration 
Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural Network (RNN) 
commonly used for time-series prediction tasks. LSTM networks were created to solve the 
vanishing/exploding gradient issue that presents itself in basic RNNs.  In this case, the data has 
been formatted where each sequence is a growth stage series of 18 rows and thus makes it 
conducive for training by an LSTM network.  
The dataset includes columns for GDD, PAR, and rolling averages of precipitation which indicates 
the quantity of temperature, PAR, and water available for the creation of biomass and ultimately 
grain yield via photosynthesis.  Each of the input features was scaled using StandardScaler in the 
scikit-learn library to facilitate improved training by removing the mean and scaling to unit 
variance.  The dataset was subsequently converted into various combinations of training and 
testing tensors for model training and inference outlined in the results section. 
Each model utilized learning rate = .001, hidden layer size = 25, number of layers = 2, loss function 
= mean absolute error (MAE), and dropout = 0.5. These values were determined through initial 
experimentation with the dataset. 

6. Results 

6.1 Batch Size Evaluation 
The first evaluation was based on batch size of how data is presented to the LSTM network.  
Figure 6 shows that batch sizes 6, 8, and 10 were clustered together and stabilized at a mean 
absolute error (MAE) of approximately 20, while batch sizes 4, 12, and 16 stabilized at an MAE 
of approximately 28. Based on these results, a batch size of 8 was used for the remainder of the 
paper.  Each batch size was run for 2,500 epochs. 
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Figure 6. Comparison of Loss Function (MAE) vs. Training Epochs for Various Batch Sizes (4,6,810,12,16) 

6.2 Input Data Evaluation 
While each growth stage series included values from -1 to16, it is recognized that in the later 
growth stages, the weather has a diminishing role in yield. Additionally, four rolling averages were 
calculated to assess which representations of precipitation most positively influenced the model. 
To understand which combinations of input data and input sequences yielded the best results, 
the data was partitioned into a five-fold cross validation set by planting date, using data from four 
planting dates as training data and the remaining one as a validation set. This approach was 
chosen to ensure that all replications stayed in the same partition to avoid overfitting. Additionally, 
the availability of five planting dates was conducive for five-fold cross validation. 

 
Figure 7: Combinations of growth stage sequence and input columns 

Twelve different variations of growth stage sequences were tested with four different variations of 
input columns for a total of 48 different combinations. The variations that were evaluated are 
shown in Figure 7. 
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Table 3. Comparison of Average and Standard Deviation of MAE for 5 cross-validation runs

    

Highlighted in Table IV in green is the best combination of growth stage sequence and training 
input columns that yield the lowest MAE (gs4, X_2).  The subsequent sections use this input 
configuration. Figure 10 shows the predicted vs. actual yield for the input configuration gs4, X_2 
that was experimentally determined to have the lowest MAE. 

 

Figure 8. Results shown from five-fold cross validation.  Each planting date shown (PD1-5) is from the test set and was 
trained from the other 4 planting dates using input configuration: gs4, X_2. 

6.3 Using location specific data 
In this section, the effect of keeping location-specific data segregated and training the data for 
each location separately using gs4 and X_2 as the input data configuration was evaluated.  With 
a smaller dataset, training was conducted for 6,000 epochs to enable training losses to stabilize. 
This input data configuration was selected based on the results of Section 6.2. Table VI shows 
that a marginally improved MAE is achieved during testing at Northwest and Wooster (19.2 and 
21.2 respectively) while Western (36.4) does not appear to benefit from location specific training 

X_1 X_2 X_3 X_4
gs1 30.5 28.2 27.1 29.5
gs2 28.9 26.8 24.7 23.9
gs3 25.7 29.3 25.6 26.1
gs4 26.0 22.6 24.7 28.4
gs5 27.5 30.3 25.5 28.4
gs6 29.6 27.0 29.2 24.6
gs7 26.2 29.4 27.5 26.6
gs8 27.5 27.8 26.8 30.6
gs9 25.5 25.8 27.7 31.8
gs10 25.6 27.4 27.7 24.9
gs11 24.0 23.2 27.3 28.9
gs12 25.9 29.5 31.8 30.7
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and testing.  The yield measurements at Western had considerably higher standard deviation 
which may contribute to the reduced performance in the LSTM model. 

Table 4. Analysis of model accuracy (MAE) using location specific data 

 

7. Future Work 
The results from this paper indicate that high quality field scale data could provide the basis for 
accurate field-scale yield estimation.  Furthermore, it highlights the possibility of creating 
agricultural foundation models drawn from the largest dataset possible which can then be fine-
tuned on field scale data to provide the most accurate results for farmers.  Of course, farmers 
who don’t have the interest or capability in collecting high-fidelity on-farm data could still benefit 
from the results of generalized, less accurate models. 
While this paper demonstrates promising results for field scale yield estimation, future work 
centered around five areas are important to make this a viable approach in production agriculture: 

1. Growing the dataset. Machine learning models generally improve as their underlying 
dataset grows.  Given the accuracy reported in this paper is from a dataset much smaller 
than other machine learning approaches referenced in this paper, it shows promise that a 
larger dataset that covers many more years and soil types could further increase the 
accuracy using this approach.  

2. Evaluating alternative models. While LSTM models are commonly used for time-series 
data, XGBoost and various types of Transformer architectures have also proven to 
perform well on time-series data. It would be beneficial to evaluate alternative model 
architectures on this dataset. 

3. High spatial resolution soil testing. Including more soil characteristics in addition to 
organic matter such as CEC, pH, and slope at higher spatial resolution holds the potential 
to improve the model prediction accuracy. 

4. Growth Stage inference from Unmanned Aerial Systems (UAS) imagery. While this 
paper relied on manual observations of growth stage weekly in the field, future versions 
of this work are envisioned to leverage imagery from Unmanned Aerial Systems (UAS) to 
infer growth stage using machine learning techniques such as Vision Transformers (ViT). 

5. Splicing weather data scenarios in-season to provide daily yield predictions. While 
this paper retrospectively looked at yield estimation, the goal is to provide yield predictions 
and ranges during the growing season that splices elapsed weather data with future 
meteorological scenarios for the current growing season to provide in-season yield 
estimation. 

8. Conclusion 
This paper demonstrated that using a growth stage centric approach to field scale yield estimation 
can achieve MAE of 22.6 bushels / acre with a relatively small dataset (228 sequences) across 3 
locations. On this dataset, it also demonstrated that the MAE could be improved to 19.2 bu/acre 

Cross Validation train_loss test_loss train_loss test_loss train_loss test_loss
Train (PD2,3,4,5), Test (PD1) 10.5 45.5 7.8 12.8 8.3 21.9
Train (PD1,3,4,5), Test (PD2) 9.7 32.1 8.2 12.2 9.6 31.8
Train (PD1,2,4,5), Test (PD3) 14.0 27.2 9.7 14.0 7.2 20.9
Train (PD1,2,3,5), Test (PD4) 8.4 59.0 9.4 41.5 5.9 14.7
Train (PD1,2,3,4), Test (PD5) 10.6 18.1 10.2 15.3 9.1 16.7

Location Average 36.4 19.2 21.2

Western Research 
Station

Northwest Research 
Station

Wooster
Snyder Farm
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by training for a single location.  This corresponds to an error of approximately 10% in yield 
estimation. Based on these results, it indicates that transforming meteorological data into a growth 
stage centric dataset could be a promising approach to provide in-season field scale yield 
prediction. 
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