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Abstract.  
Improved understanding of cover crop performance in a large geographic area is crucial for 
fostering widespread adoption of cover crops as a conservation practice. Conventional regression 
methods fail to analyze on-farm agricultural data spanning various locations and multiple 
timeframes effectively. This research proposes to employ a linear mixed modeling approach to 
assess remote sensing (RS), biophysical characteristics and management practices as potential 
predictors of cereal rye biomass across multiple sites during a growing season. Field 
measurements, including cereal rye biomass and biophysical crop characteristics were collected 
alongside multispectral images from an unmanned aerial system (UAS) in 13 fields across 
Northwest Ohio in the spring of 2021. A baseline linear mixed model was specified to evaluate 
biomass accumulation across fields as a function of management practices defined by planting 
timing and methods. Residuals from the fitted model were extracted and subjected to stepwise 
selection for additional explanatory variables, including 13 vegetation indices (VIs) derived from 
remotely sensed images and two biophysical characteristics, namely crop height and canopy 
cover percentage (CCpercent). An extended model expanded the Baseline model by further 
incorporating selected explanatory variables into the linear predictor, specifically blue green ratio 
(BGratio), simple ratio rededge (SRrededge) and CCpercent as well as their interactions with 
management groups. Results showed that the early planted cereal rye using drilling approach 
consistently had the greatest biomass accumulation throughout the spring, suggesting differences 
in overall growth induced by different farm management practices. The extended model had better 
model fit than the baseline model based on Akaike Information Criteria (AIC), AIC corrected 
(AICC), and Bayesian Information Criteria (BIC) statistics. This was further validated by significant 
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differences observed in a likelihood ratio test. The total variance in the extended model was 
reduced by up to 61%, underscoring the importance of RS and biophysical characteristics in 
enhancing precision and predictability of the model. In summary, the linear mixed model 
accompanied by RS-derived VI and biophysical characteristics better captured variabilities in on-
farm cereal rye biomass across multiple sites along a growing season. 
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 Cover crop, Cereal rye; Cover crop biomass estimation; Unmanned Aerial System (UAS); 
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1. Introduction 
In recent years, winter cover crops have been proposed as mitigation strategies for both 
environmental and agronomic benefits, namely prevention of soil erosion, control of weeds, 
reduction of soil compaction, and improved soil carbon sequestration (Daryanto et al., 2018; 
Finney et al., 2016). Indeed, cover crops are increasingly recognized as important tools for 
improving soil health, fostering climate-resilient farms, and mitigating adverse environmental 
impacts, as evidenced by the implementation in federal and state-level incentive programs (Duke 
et al., 2022; Wallander et al., 2021).  
However, the current rate of cover crop adoption in Midwest remains relatively low, with only 7% 
of total croplands planted in cover crops in 2021 (Zhou et al., 2022). Factors limiting the adoption 
of cover crops include logistical challenges in establishing them and managing their biomass at 
the end of the season, as well as agronomic concerns such as crop yield penalties in subsequent 
cash crops due to slow/delayed emergence due to cover crop residues on the ground (Plastina 
et al., 2020; Burnett et al., 2018; Roesch-Mcnally et al., 2018). Additionally, social and behavioral 
factors further compound these challenges (CTIC, 2016; Myers & Watts, 2015; Singer, 2008). 
Knowledge of factors influencing the cover crop growth and its variability within a field can help 
farmers in several ways. For instance, understanding cover crop biomass variability allows 
farmers to: 1) identify areas with higher or lower nutrient content, enabling targeted fertilization 
and nutrient management for the subsequent cash crops; 2) identify areas prone to weed 
pressure and plan appropriate weed control measures; 3) determine potential pest and disease 
dynamics; and 4) manage input costs and increase overall farm profitability by tailoring 
management practices to the specific needs of different areas within a field (Ruis et al., 2019).  
Winter cover crops are typically planted in the fall, either alongside standing cash crops or 
immediately after cash crops harvest, leaving a narrow time window for germination and 
establishment. Delayed planting of cover crops can reduce their spring biomass production. 
Furthermore, the choice of planting method, such as aerial broadcasting or drilling, influences 
seed-to-soil contact and subsequently impacts overall biomass growth. Previous studies have 
investigated the effects of management practices on cover crop growth through controlled plot-
scale experiments (Balkcom et al., 2023; Boyd et al., 2009; Haramoto, 2019; St Aime et al., 2022). 
However, the relevance of these findings to larger areas under commercial production remains 
unclear, largely due to variable soil and topographic conditions (Duiker, 2014; Hayden et al., 2015; 
Moore & Mirsky, 2020). On-farm data poses unique challenges for collection due to the 
cumbersome and costly nature of the conventional manual approach to collecting ground-truth 
data. Similarly, analysis of on-farm data requires simultaneous consideration of multiple sources 
of variability (e.g. between- and within-field variability). 
With continuous development and advancement in sensor technologies, remote sensing (RS), 
particularly unmanned aerial system (UAS), is becoming a cost-effective approach for collecting 
field-level data of high resolution that could help in understanding within-field variability in crop 
growth. Specifically, vegetation indices (VIs), computed from RS-based images, have been used 
as proxies of crop growth (Avneri et al., 2023; Rosle et al., 2019; Teshome et al., 2023; Zhang et 
al., 2021). Previous studies used linear and non-linear regression-type approaches to model 
cover crop biomass and its nitrogen (N) content as a function of direct and indirect traits of cover 
crop growth, including VIs and biophysical measurements (Brennan & Smith, 2023; Marcillo et 
al., 2020; Moore & Mirsky, 2020; Muñoz et al., 2010; Murrell et al., 2017; Prabhakara et al., 2015; 
Roth & Streit, 2018). For instance, Prabhakara et al. (2015) explored the linear relationship 
between winter cover crop biomass and RS image-derived VIs, growing degree days, and percent 
ground cover and showed correlations of up to 0.84 between 10 VIs and cover crop biomass. 
Another study by Marcillo et al. (2020) compared least absolute shrinkage and selection operator 
(LASSO), Ridge, and random forest (RF) for predicting both cereal rye biomass and its N content 
as a function of RS image derived features.  
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Despite wide use of conventional linear regression and machine learning methods in agricultural 
research, they have limitations when used for the analysis of on-farm data. Most prominent 
amongst said limitations is the inability of traditional regression and machine learning to 
accommodate hierarchical data structure (e.g. multiple observations across times from multiple 
fields across sites) and ensuing correlation patterns that often emerge from temporal and spatial 
dependencies among data (Yang, 2010), as well as heteroskedasticity. Linear mixed models can 
seamlessly incorporate hierarchical data structure and multiple sources of variability in a dataset 
through specification of fixed and random effects for systematic and non-systematic sources of 
variability, respectively. While fixed effects represent the factor of interest or explanatory 
covariates on the response variable, random effects incorporate hierarchical levels of data 
architecture reflective of the design structure or data generation process. Through this, linear 
mixed models allow us to naturally delineate different levels of data organization and 
corresponding inferential scope (Milliken & Johnson, 2009; Stroup, 2013). 
The overarching goal of this study was to assess the differences in spring growth of winter cereal 
rye between management practices defined by planting timing and method in large production 
areas. To this end, we will utilize a linear mixed modeling approach that accommodates the 
hierarchical structure of the data. Enhancements of model fit to data will be further explored by 
considering direct (i.e. biophysical parameters) and indirect (i.e. RS-based) measurements as 
explanatory variables. 

2. Materials and Methods 

2.1 Study Sites and Sampling Protocol 
The study focused on 13 fields located in northwest Ohio during the 2020 to 2021 cover crop 
season (Figure 1). Fields were planted with cereal rye between September 30 and November 17, 
following soybean harvest. Planting methods for cereal rye seeds included drilling, aerial, and 
broadcasting in 9, 2, and 2 fields, respectively. Fields planted during September to October 15 
were grouped as early planting while the fields planted after October 16 were grouped as late 
planting. Planting methods and timing were grouped together to generalize the diverse 
management practices across each field. 

 
Figure 1: Study area reflecting (a) locations of cereal rye fields across northwestern Ohio, and (b) randomly selected six 

sampling locations within one of the fields. 

In each field, 2-3 sub-field zones were first identified based on the dominance of various soil types 
by referencing the soil map from the soil survey geographic database (SSURGO) (USDA NRCS, 
2022). A total of six sampling locations were randomly selected from the sub-field zones, with 
each zone containing 1-3 locations, following a zig-zag pattern as recommended by the OSU e-
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fields data collection protocol (OSUE, 2021) to ensure representativeness of the area. 

2.2 Field Data Collection 
Composite samples of cereal rye biomass were collected in the spring of 2021 between March 
and May using a (0.50)2 m2 quadrat (Figure 2). At each of the six locations within a field, samples 
were repeatedly collected for three times (T1, T2, and T3) during the cereal rye growing season, 
where T1 is early March, T2 is late March to early April, and T3 is late April to early May.  

 
Figure 2: Data collection process in each field reflecting (a) 0.50 * 0.50 m2 quadrant used for biomass data collection, (b) 

crop height measurement using a tape, (c) measurement of canopy cover percentage using canopeo app in a smartphone, 
and (d) destructive sampling of cereal rye within a quadrat. 

Collected biomass samples were subsequently oven-dried at 55℃ and weighed for dry biomass 
content; we hereafter refer to this as cereal rye biomass. In addition, crop height and canopy 
cover percentage (CCpercent) were also collected from sampling locations in each field. Average 
crop height in a quadrat was manually measured using a meter-scale tape (Figure 2b). CCpercent 
was measured using a mobile app-Canopeo (Patrignani & Ochsner, 2015). Canopeo uses color 
values in the red-green-blue (RGB) channel to first classify all the image pixels into green and 
non-green and then calculates the fraction of green pixels to produce a binary image showing the 
green cover percentage. 

2.3 Remote Sensing Variables 
Alongside field data collection, DJI Phantom 4 multispectral UAS was flown at approximately 90 
m of height over the field to capture data in five multispectral bands (blue (B), green (G), red (R), 
red edge (RE), near-infrared (NIR)) at a ground sampling distance (GSD) of around 4-6 cm per 
pixel. The images were captured in a lawnmower fashion, maintaining an 80% front overlap and 
a 70% side overlap. The UAS was equipped with a real-time kinematics (RTK) module, ensuring 
centimeter-level precision in image positioning. Red markers were strategically placed at 
sampling locations to precisely locate sampled biomass in the images. Raw multispectral images 
collected by UAS were processed using Pix4D, an image processing software, which employs 
structure-from-motion (SFM) techniques (Pix4D, 2022) to stitch hundreds of raw images together 
to generate a single orthomosaic per field. Post-processing steps included identifying the 
sampling locations in the orthomosiac image, drawing an area corresponding to the size of the 
quadrat, and computing average pixel values across five bands – R, G, B, RE, and NIR within the 
quadrat, representing the spectral properties of collected biomass samples.  
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Figure 3: UAS image data collection, processing, and data extraction workflow. 

Based on the average pixel values at each sampling location for each of the five spectral bands, 
13 VIs were computed to relate with biomass. The VIs included blue-green ratio (BGratio), red-
green ratio (RGratio), normalized difference vegetation index (NDVI), green normalized difference 
vegetation index (GNDVI), simple ratio (SR), enhanced vegetation index (EVI), normalized green 
red difference index (NGRDI), excess green (ExG), triangular vegetation index (TVI), soil adjusted 
vegetation index (SAVI), normalized difference red edge Index (NDRE), simple ratio red edge 
(SRrededge), and red-edge triangular vegetation index (RTVI) (Table 1). 

Table 1: Vegetation indices (VIs) computed based on the combinations of five multispectral bands i.e. red (R), blue (B), 
green (G), red edge (RE), and near-infrared (NIR). 

Indices Equation Source 

RGratio  𝑅
𝐺

 (Gamon & Surfus, 1999) 

BGratio 𝐵
𝐺

 (Sellaro et al., 2010) 

NDVI (𝑁𝐼𝑅 − 𝑅)
(𝑁𝐼𝑅 + 𝑅)

 (Rouse et al., 1974) 

GNDVI (𝑁𝐼𝑅 − 𝐺)
(𝑁𝐼𝑅 + 𝐺)

 (Moges et al., 2005) 

SR 𝑁𝐼𝑅
𝑅

 (Jordan, 1969) 

EVI 2.5(𝑁𝐼𝑅 − 𝑅)
(𝑁𝐼𝑅 + 6𝑥𝑅 − 7.5𝑥𝐵 + 1)

 (Huete et al., 2002) 

NGRDI 
	
(𝐺 − 𝑅)
(𝐺 + 𝑅)

 (Tucker & Sellers, 1986) 

ExG (2𝑥𝐺 − 𝑅 + 𝐵) (Woebbecke et al., 1995) 
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TVI 0.5 ∗ [120 ∗ (𝑁𝐼𝑅 − 𝐺) − 200 ∗ (𝑅 − 𝐺)] (Broge & Leblanc, 2001) 

SAVI (1 + 0.5) ∗ (𝑁𝐼𝑅 − 𝑅)/(𝑁𝐼𝑅 − 𝐺) (Huete, 1988) 

NDRE (𝑁𝐼𝑅 − 𝑅𝐸)
(𝑁𝐼𝑅 + 𝑅𝐸)

 
(Gitelson & Merzlyak, 1994) 

SRrededge 	
𝑁𝐼𝑅
𝑅𝐸

 (Cao et al., 2016) 

RTVI 100 ∗ (𝑁𝐼𝑅 − 𝑅𝐸) − 10 ∗ (𝑁𝐼𝑅 − 𝐺) (Chen et al., 2010)  

2.4 Remote Sensing Variables 
2.4.1 Preliminary Data Descriptive and Preprocessing 

The data used in this study consisted of a total of 228 samples collected in 13 different fields 
across three distinct periods. A list of potential explanatory variables for biomass included 13 RS-
based VIs, derived from UAS images, and two biophysical characteristics - CCpercent and crop 
height. Due to the skewed distribution of cereal rye biomass, a natural logarithm transformation 
was applied to normalize the data and mitigate skewness in the response during modeling. 
Scatterplots were used for preliminary screening of the relationship between the explanatory 
variables and cereal rye biomass in the transformed scale. Log transformation of explanatory 
variables including SR, EVI, TVI, and RTVI was implemented to facilitate linear relationship for 
modeling purposes.  
2.4.2 Specification of Statistical Models 

To analyze the data, two linear mixed models, referred to as Baseline and Extended, each 
incorporating varying combinations of variables, were developed in three subsequent steps. Both 
models were fitted to the log-transformed cereal rye biomass. 
Step 1: Baseline Model  
Model I was developed to reflect the data collection process across multiple fields and periods. 
The model consists of fixed effects of (1) groups representing four combinations of planting timing 
and planting method of cereal rye in fall, (2) time for biomass data collection in spring, and (3) 
their two-way interaction as linear predictors. Meanwhile, random effects include (1) fields nested 
within the group, (2) fields nested within the group and crossed with time of biomass data 
collection to identify repeated measures within each field, and (3) random residual to identify 
subsampling at the data measurement level. The model was specified as: 
𝑙𝑜𝑔	(𝑌!"#$) = 𝜂 +	𝛼" +	𝐹!(") +	𝜏# + 	𝛼𝜏"# + 	𝐹𝜏!(")# +	𝑒!"#$ 

where 𝐹!(")~𝑁𝐼𝐼𝐷(0, 𝜎'() 	⊥ 	𝐹𝜏!(")#~𝑁𝐼𝐼𝐷(0, 𝜎')( ) 		⊥ 	 𝑒!"#$~𝑁𝐼𝐼𝐷(0, 𝜎*()  

i = 1, …, 13 j = 1, …,4 k = 1, …, 3 l = 1, …, 6. NIID represents Normally, Identically, and 
Independently Distributed. 
Yijkl = Observed cereal rye biomass of the lth cereal rye sample from the ith field at the kth time 
assigned to the jth management group. 
η = Intercept for the response variable. 
αj = Differential effect of the jth management group. 
Fi(j) = Differential effect of the ith field assigned to (nested within) jth management group. 
τk = Differential effect of the kth timepoint. 
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ατjk = Differential effect of the jth management group at the kth timepoint. 
Fτi(j)k = Differential effect of the ith field nested within the jth management group at timepoint k. 
eijkl = Leftover residual noise for the lth sample from the ith field assigned to the jth management 
group and measured at the kth time. 
The random effect factors consist of three components, reflecting sources of random variability in 
data, namely σ2F (i.e. between-field variance), σ2Fτ (i.e. variance between multiple time points 
measured within a field), and σ2e (i.e. within-field variance or residual). Total variance (σ2T) is 
given as sum of three variance components (Equation 1). 

σ+( = σ,( + σ,-( +	σ-(             (1) 
 
Step 2: Selection of additional explanatory variables  
After fitting the Baseline Model, residuals were computed as the difference between observed 
and predicted values, eijkl = Yijkl –Ŷijkl, which reflect leftover noise in the data after accounting for 
differences between the management group and the sampling scheme (i.e. multiple samples 
collected from each field at each time point) throughout the growing season. Residuals were then 
subjected to model selection using a stepwise approach to identify additional suitable explanatory 
variables that might help explain leftover noise when incorporated into the linear predictor. The 
potential explanatory variables included 13 VIs, crop height, and CCpercent. Based on this 
process, CCpercent, BGratio, and SRrededge were selected from 15 candidates for inclusion in 
the final model.   
Step 3: Extended Model  
Using three covariates selected from stepwise selection process, the Baseline Model was further 
extended to include fixed effects of (1) group, (2) time, (3) their two-way interaction, (4) three 
covariates and (4) their two-way interaction with group. It also included random effects of (1) fields 
nested within the group, (2) fields nested within the group and crossed with a time of biomass 
data collection, and (3) random residual. 
2.4.3 Model Comparison 

For model comparison, the Baseline and Extended Models were fitted using maximum likelihood 
estimation, and fit statistics, including Akaike Information Criteria (AIC) (Akaike, 1974), AIC 
corrected (AICC) (Burnham & Anderson, 2002), and Bayesian Information Criteria (BIC) 
(Schwarz, 1978), of these two models were compared. A likelihood ratio test (LRT) statistic was 
also used to assess the statistical significance between the Baseline and Extended models.  
Both models were expanded to accommodate heterogeneous residual variance across fields, 
with variance components estimated using the restricted maximum likelihood (REML) method. 
Kenward Roger’s method was used to estimate degrees of freedom and adjust standard errors. 
Model assumptions were evaluated using externally studentized residuals. Estimated least-
square means for cereal rye biomass and the corresponding 95% confidence intervals were then 
back-transformed to the original data scale. Comparisons between management groups 
throughout the growing season were based on the Baseline Model using Bonferroni adjustments 
to prevent Type I error inflation. A Bonferroni-adjusted P-value of less or equal to 0.05 was 
considered statistically significant, while a P-value between 0.05 and 0.10 was considered 
marginally significant. The relationship between covariates and cereal rye biomass was analyzed 
using the Extended Model. All statistical analyses were performed using the GLIMMIX procedure 
in SAS (Version 9.4; SAS Institute, Cary, NC, USA). 
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3. Results 

3.1 Baseline Model 
The baseline model showed no evidence of a two-way interaction between management groups 
and timing for data collection on cereal rye biomass (P = 0.16). However, there were evidence of 
the main effects of management groups (P = 0.01) and time of data collection (P < 0.001) on 
cereal rye biomass. Throughout all data collection periods in spring, the Early-Drilled group had 
consistently greater cereal rye biomass than the Late-Aerial, Late-Broadcast, and Late-Drilled 
groups, which showed no evidence for significant differences from each other. In early spring, the 
Early-Drilled group had significantly more biomass than the Late-Aerial (P = 0.002) and Late-
Drilled (P = 0.04) groups. In mid-spring, the significant difference was observed only between the 
Early-Drilled and Late-Aerial groups (P = 0.02). By late spring, the Early-Drilled had significantly 
more biomass than the Late-Aerial (P = 0.02) and Late-Broadcast (P = 0.05) groups. 

 
Figure 4: Cereal rye biomass (least square mean estimate ± 95% confidence interval) for four different management groups 

in spring of 2021. 

3.2 Extended Model - Model Enhancement with Remote Sensing and Biophysical 
Predictors 
3.2.1 Comparison based on Fit Statistics 

Compared to the Baseline Model, the Extended Model including additional explanatory covariates 
including RS-derived VIs and biophysical characteristics improved fit to data, which was 
evidenced by maximum-likelihood-based fit statistics. Specifically, the Extended Model showed a 
decrease of 62 BIC units, 69 AIC units, and 63 AICC units relative to the Baseline Model, thereby 
demonstrating that the inclusion of heterogeneous slopes for CCpercent, BGratio, and 
SRrededge help explain variability in cereal rye biomass. Similarly, the chi-square statistic (i.e., 
93.09) based on the likelihood ratio test exceeded the critical value at 95% quantile of the 
reference distribution with 12 degrees of freedom (i.e., 21.03), indicating that the Extended Model 
provides a better fit than the Baseline Model. 

Table 4: Model fit statistics and likelihood ratio test of the Baseline and Extended models. 

Model -2Log-likelihood AIC AICC BIC χ2  
test statistic 

χ2 p-value  
(DF = 12, 95%) 

Baseline 506.22 536.22 538.49 544.70 
93.09 21.03 

Extended 413.13 467.13 475.00 482.38 
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Note: Chi-square test statistic is computed based on difference of log-likelihood between the 
models while chi-square at critical value is computed based on the degrees of freedom and 95% 
significance level at chi-square distribution. 
3.2.2 Comparison based on Variance Estimates 

The importance of covariates in controlling non-systematic variance was evaluated by comparing 
residual and total variance between Extended and Baseline Models (Figure 5). Since residual 
variance varied from one field to another for all 13 fields, total variance was unique to each field. 
For the Baseline Model, variance estimates showed a between-field variance of 0.57, variance 
between multiple time points of 0.23, and residual variance ranging from 0.01 to 1.68. For the 
Extended Model, between-field variance was reduced to 0.23, variance between multiple time 
points remained at 0.23, and residual variance ranged from 0.007 to 1.5. Similarly, total variance 
ranged from 0.58 to 2.25 without covariates and from 0.57 to 2.06 with covariates. 

 
Figure 5: (a) Residual variance and (b) total variance across 13 fields for the models without (w/o) (i.e., baseline model) and 

with (w/) including the RS-based (BGratio and SRrededge) and biophysical (CCpercent) covariates (i.e. extended model). 

Inclusion of covariates in the model resulted in a decrease in both total variance and residual 
variance across all fields, indicating a reduction in unexplained variance. The highest reduction in 
total variance and residual variance were 60 and 61%, respectively, for field F5. By incorporating 
covariates as a systematic component, the Extended Model accounted for some of the non-
systematic variability that was previously attributed to random factors. 

4. Discussion 
In this study, we focused on assessing the variability in springtime cereal rye growth relative to 
management practices, based on multitemporal data collected on farmers’ fields, in a linear mixed 
modeling framework. We also evaluated the efficacy of RS-derived and biophysical covariates in 
explaining the variation present in the data and improving model precision. Of the 13 covariates, 
CCpercent, BGratio, and SRrededge were selected based on a formal stepwise variable selection 
process and were found to account unexplained variability in the cereal rye biomass data better 
than other covariates.  
RS-based VIs frequently serves as reliable proxies for crop health, offering insights into 
environmental stresses like nutrients, heat, and water that may or may not be linked with 
management practices. For instance, BGratio, which considers crop reflectance in blue and green 
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wavelengths of electromagnetic radiation, can capture variability in crop growth dynamics 
specifically related to canopy development. In crop canopies, blue light is absorbed by the 
photosynthetic pigments, notably chlorophyll, facilitating photosynthesis and subsequent carbon 
assimilation crucial for biomass accumulation. Meanwhile, green light is a strong indicator of the 
abundance of chlorophyll. These photosynthetic pigments are sensitive to different environmental 
stressors and hence vary across the crop growth stages. Consistent with prior studies, we found 
red-edge-based VIs such as SRrededge to be strongly associated with crop biomass (Kanke et 
al., 2016; M. A. Cho & Atzberger, 2008; Mutanga & Skidmore, 2004).  
Consistent with our findings, previous studies have recognized canopy cover percentage as an 
important variable in explaining variations in crop biomass (Flombaum & Sala, 2007; Goslee, 
2020; Montès et al., 2004). However, canopy cover percentage data were collected at a ground 
level and hence presents logistical challenges when it comes to collecting data from multiple 
fields. In contrast, SRrededge, which was also found to well explain leftover variability in the 
biomass data, can be effectively obtained using UAS at high resolution and with broader 
coverage.  
The inclusion of RS-based and biophysical covariates in the linear mixed model provided 
evidence for improved model performance reflected through AIC, AICC, and BIC metrics 
compared to the model without these covariates. Based on likelihood ratio test, we found a 
significant differences between the models with and without covariates. With the inclusion of 
covariates, there was decrease in total variance due to reduction in leftover or unexplained 
variation which is key to improving precision of estimates for fixed effects and random effects. 
This further elucidates the role of RS-based and biophysical characteristics in explaining the non-
systematic variation in cereal rye biomass and improving model precision for better predictability 
and generalizability. 
Consistent with prior works (Duiker, 2014; Feyereisen et al., 2006; Staver & Brinsfield, 1998), we 
observed consistently higher springtime biomass accumulation for cereal rye planted early in the 
fall using a drilled approach. We also observed differences in cereal rye biomass between Early-
Drilled and Late-Drilled groups particularly during early spring, indicating the potential impact of 
planting time regardless of planting methods. From 2003 to 2005, Duiker (2014) found over 1.5 
Mg/ha of cereal rye biomass in early May when planted in early October, dropping below this 
threshold for mid-October plantings. Similarly, Feyereisen et al. (2006) noted higher cumulative 
biomass in southwestern Minnesota when cereal rye was sown early (September 15) compared 
to late October plantings. Haramoto (2019) observed superior establishment with the drilling 
method (75%) over broadcasting (22%) in a two-year study following corn, though delayed drilling 
led to reduced growth and nitrogen uptake. The reason for relatively lower biomass accumulation 
in late planted groups could be due to slowdown in phenological development of cereal rye when 
the establishment date is delayed from the early part to late fall (Farsad et al., 2011). 
Broadcasting and aerial seeding are popular choices among growers due to their economical and 
logistical advantages. Aerial seeding is an efficient approach of planting cover crops on standing 
cash crops over a large area. This method is especially valuable in regions where harvesting of 
summer cash crops is delayed and there is a limited time window for cover crops’ planting. 
However, success in cover crop emergence with aerial seeding depends on adequate soil 
moisture and late summer/early fall precipitation (Wilson et al., 2013). Broadcasting, similar to 
aerial seeding but ground based, can result in improved cover crop emergence with tillage and 
early fall seeding, capitalizing on warmer temperatures and potential rainfall (Brooker et al., 2020). 
However, without additional tillage, seeding into dry soil risks delayed establishment until 
sufficient rainfall is received, which improves soil moisture (Hillel, 2003). Based on analyses of 
precipitation data from PRISM, we observed a dry spell for about 10 days from November 1 to 
November 10 in three field locations planted late (i.e. late October to early November) with aerial 
and broadcasting method. This could be the reason the Late-Aerial and Late-Broadcast groups 
consistently showed lower springtime biomass, particularly during mid- and late spring.  
The multi-location multi-temporal agronomic data on winter cover crop collected across fields in 
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a larger production area inherently are hierarchical in nature. It is thus important to carefully 
analyze such data to identify the data generation process as well as structure of the data. Most 
of the prior studies of similar kind often relied either on standard statistical methods or advanced 
machine learning techniques while assuming mutually independent observations and nonexistent 
data structure. This undermines the critical statistical assumptions while ignoring the correlation 
patterns in the data due to hierarchical structure and often leads to false inference and conclusion 
(Stroup, 2013). In our study, we incorporated a linear mixed modeling framework that possess 
unique ability to encode multilevel hierarchical data structure into the analysis. We specified fixed 
effects concerning winter cover crop management groups, time of data collection and various RS-
based and biophysical explanatory covariates. Meanwhile, random effects were used to reflect 
multiple sources of non-systematic variation not explained by the fixed effects. This allowed us to 
incorporate the data generation process in the modeling while assessing whether differences in 
cereal rye biomass accumulation are consistent across different field and growing conditions over 
a larger production region in the northwestern, Ohio. 
While this study offers insights on factors useful in assessing variability in cereal rye biomass in 
on-farm conditions, our study’s scope is constrained as it only considers fields previously planted 
with soybeans, limiting generalizability to fields with different prior crops like corn. Future research 
should incorporate diverse prior crop data to enhance generalizability. Furthermore, our study 
treats biomass sampling as a repeated measure across three time periods. However, the 
destructive nature of sampling may introduce bias as data samples were not collected from the 
same spot but from the surrounding locations. It is a challenge for repeatedly measuring the same 
area while conducting destructive sampling of biomass. We went about selecting close locations 
for the three times with the assumption that they might be achieving similar growth. While it is no 
brainer to sample the same spot repeatedly, the best practice could be ensuring similar growth 
conditions in the closely located sampling spots. 

5. Conclusions 
In conclusion, integrating linear mixed modeling framework enabled us to incorporate hierarchical 
structure of multi-field multi-temporal winter cover crop data into the modeling process and assess 
multiple sources of variability. Two modeling strategies with and without explanatory covariates 
were studied to assess the role of RS-derived and biophysical characteristics of winter cover crop 
in explaining springtime biomass variability. Incorporating RS-derived VIs like BGratio and 
SRrededge, along with biophysical characteristic such as CCpercent data, into the linear mixed 
model was found to improve overall model precision by explaining the leftover non-systematic 
noise in the data. While CCpercent and SRrededge showed positive relationship, BGratio showed 
no clear pattern relative to cereal rye biomass. There was evidence for varying relationships 
between the two variables (i.e., CCpercent and SRrededge) and cereal rye biomass across 
different management groups, determined by combination of planting timing and methods in the 
fall. Evidence was observed for relatively greater biomass accumulation throughout the spring 
season for cereal rye planted early in fall using drilled approach compared to late planted with 
aerial and broadcasting methods. In summary, this study underscores the efficacy of mixed 
modeling, coupled with biophysical and RS-derived measurements, in improving the 
understanding of winter cover crop growth and differences among management practices over a 
larger landscape. 

Acknowledgments 
This work was supported by funds from OSU L&L Grant# PG107271, SI Grant # PG107338, Ohio 
Soybean Council, USDA-AFRI Grant # GR130726, and Hatch Project #NC1195. We also want to 
thank Matthew Romanko, Boden Fisher, Brigitte Moneymaker, Abha Bhattarai, and Gaoshoutong 
Si for their support during field data collection. 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

13 

References 
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 

716–723. https://doi.org/10.1109/TAC.1974.1100705 
Avneri, A., Aharon, S., Brook, A., Atsmon, G., Smirnov, E., Sadeh, R., Abbo, S., Peleg, Z., Herrmann, I., Bonfil, D. J., 

& Nisim Lati, R. (2023). UAS-based imaging for prediction of chickpea crop biophysical parameters and yield. 
Computers and Electronics in Agriculture, 205, 107581. 
https://doi.org/https://doi.org/10.1016/j.compag.2022.107581 

Balkcom, K. S., Read, Q. D., & Gamble, A. V. (2023). Rye planting date impacts biomass production more than seeding 
rate and nitrogen fertilizer. Agronomy Journal, 115(5), 2351–2368. 
https://doi.org/https://doi.org/10.1002/agj2.21418 

Boyd, N. S., Brennan, E. B., Smith, R. F., & Yokota, R. (2009). Effect of Seeding Rate and Planting Arrangement on 
Rye Cover Crop and Weed Growth. Agronomy Journal, 101(1), 47–51. 
https://doi.org/https://doi.org/10.2134/agronj2008.0059 

Brennan, E. B., & Smith, R. F. (2023). Predicting cereal cover crop biomass using shoot length in California vegetable 
systems. Agricultural \& Environmental Letters, 8(1), e20099. https://doi.org/https://doi.org/10.1002/ael2.20099 

Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation 
indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 
76(2), 156–172. https://doi.org/https://doi.org/10.1016/S0034-4257(00)00197-8 

Brooker, A. P., Renner, K. A., & Basso, B. (2020). Interseeding cover crops in corn: Establishment, biomass, and 
competitiveness in on-farm trials. Agronomy Journal, 112(5), 3733–3743. 
https://doi.org/https://doi.org/10.1002/agj2.20355 

Burnett, E., Wilson, R. S., Heeren, A., & Martin, J. (2018). Farmer adoption of cover crops in the western Lake Erie 
basin. Journal of Soil and Water Conservation, 73(2), 143–155. https://doi.org/10.2489/jswc.73.2.143 

Burnham, K., & Anderson, D. (2002). Model selection and multimodel inference: a practical information-theoretic 
approach. Springer, New York. 

Cao, Q., Miao, Y., Shen, J., Yu, W., Yuan, F., Cheng, S., Huang, S., Wang, H., Yang, W., & Liu, F. (2016). Improving 
in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop 
Circle active crop canopy sensor. Precision Agriculture, 17(2), 136–154. https://doi.org/10.1007/s11119-015-
9412-y 

Chen, P., Tremblay, N., Wang, J., Philippe, V., Huang, W., & Li, B. (2010). New index for crop canopy fresh biomass 
estimation. Spectroscopy and Spectral Analysis. https://doi.org/https://doi.org/10.3964/j.issn.1000-
0593(2010)02-0512-06 

Cipoletti, N., Jorgenson, Z. G., Banda, J. A., Kohno, S., Hummel, S. L., & Schoenfuss, H. L. (2020). Biological 
consequences of agricultural and urban land-use along the Maumee River, a major tributary to the Laurentian 
Great Lakes watershed. Journal of Great Lakes Research, 46(4), 1001–1014. 
https://doi.org/https://doi.org/10.1016/j.jglr.2020.04.013 

CTIC. (2016). Annual report 2015-2016 cover crop survey. 
Daryanto, S., Fu, B., Wang, L., Jacinthe, P. A., & Zhao, W. (2018). Quantitative synthesis on the ecosystem services 

of cover crops. Earth-Science Reviews, 185(June), 357–373. https://doi.org/10.1016/j.earscirev.2018.06.013 
Duiker, S. W. (2014). Establishment and Termination Dates Affect Fall-Established Cover Crops. Agronomy Journal, 

106(2), 670–678. https://doi.org/https://doi.org/10.2134/agronj2013.0246 
Duke, J. M., Johnston, R. J., Shober, A. L., & Liu, Z. (2022). Barriers to cover crop adoption: Evidence from parallel 

surveys in Maryland and Ohio. Journal of Soil and Water Conservation, 77(2), 198–211. 
https://doi.org/10.2489/jswc.2022.00062 

Farsad, A., Randhir, T. O., Herbert, S. J., & Hashemi, M. (2011). Spatial Modeling of Critical Planting Date for Winter 
Rye Cover Crop to Enhance Nutrient Recovery. Agronomy Journal, 103(4), 1252–1257. 
https://doi.org/https://doi.org/10.2134/agronj2010.0433 

Feyereisen, G. W., Wilson, B. N., Sands, G. R., Strock, J. S., & Porter, P. M. (2006). Potential for a rye cover crop to 
reduce nitrate loss in southwestern Minnesota. Agronomy Journal, 98(6), 1416–1426. 
https://doi.org/10.2134/agronj2005.0134 

Finney, D. M., White, C. M., & Kaye, J. P. (2016). Biomass Production and Carbon/Nitrogen Ratio Influence Ecosystem 
Services from Cover Crop Mixtures. Agronomy Journal, 108(1), 39–52. 
https://doi.org/https://doi.org/10.2134/agronj15.0182 

Flombaum, P., & Sala, O. E. (2007). A non-destructive and rapid method to estimate biomass and aboveground net 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

14 

primary production in arid environments. Journal of Arid Environments, 69(2), 352–358. 
https://doi.org/https://doi.org/10.1016/j.jaridenv.2006.09.008 

Gamon, J., & Surfus, J. (1999). Assessing leaf pigment content and activity with a reflectometer. The New Phytologist, 
143(1), 105–117. https://doi.org/DOI: 10.1046/j.1469-8137.1999.00424.x 

Gitelson, A., & Merzlyak, M. N. (1994). Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments 
with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B: Biology, 22(3), 247–
252. https://doi.org/https://doi.org/10.1016/1011-1344(93)06963-4 

Goslee, S. C. (2020). Estimating pasture species biomass from canopy cover. Crop, Forage \& Turfgrass Management, 
6(1), e20038. https://doi.org/https://doi.org/10.1002/cft2.20038 

Haramoto, E. R. (2019). Species, Seeding Rate, and Planting Method Influence Cover Crop Services Prior To Soybean. 
Agronomy Journal, 111(3), 1068–1078. https://doi.org/https://doi.org/10.2134/agronj2018.09.0560 

Hayden, Z. D., Ngouajio, M., & Brainard, D. C. (2015). Planting Date and Staggered Seeding of Rye–Vetch Mixtures: 
Biomass, Nitrogen, and Legume Winter Survival. Agronomy Journal, 107(1), 33–40. 
https://doi.org/https://doi.org/10.2134/agronj14.0237 

Hillel, D. (2003). Introduction to environmental soil physics. Elsevier. 
Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. 

https://doi.org/https://doi.org/10.1016/0034-4257(88)90106-X 
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and 

biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1), 195–213. 
https://doi.org/https://doi.org/10.1016/S0034-4257(02)00096-2 

Jordan, C. F. (1969). Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology, 50(4), 663–666. 
https://doi.org/https://doi.org/10.2307/1936256 

Kanke, Y., Tubaña, B., Dalen, M., & Harrell, D. (2016). Evaluation of red and red-edge reflectance-based vegetation 
indices for rice biomass and grain yield prediction models in paddy fields. Precision Agriculture, 17(5), 507–530. 
https://doi.org/10.1007/s11119-016-9433-1 

M. A. Cho, A. K. S., & Atzberger, C. (2008). Towards red-edge positions less sensitive to canopy biophysical parameters 
for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by 
arbitrarily inclined leaves (SAILH) simulated data. International Journal of Remote Sensing, 29(8), 2241–2255. 
https://doi.org/10.1080/01431160701395328 

Marcillo, G. S., Mirsky, S., Poncet, A., Reberg-Horton, C., Timlin, D., Schomberg, H., & Ramos, P. (2020). Using 
statistical learning algorithms to predict cover crop biomass and cover crop nitrogen content. Agronomy Journal, 
112(6), 4898–4913. https://doi.org/https://doi.org/10.1002/agj2.20429 

Milliken, G., & Johnson, D. (2009). Analysis of Messy Data. Volume I: Designed Experiments (2nd ed.). Chapman & 
Hall/CRC Press. 

Moges, S. M., Raun, W. R., Mullen, R. W., Freeman, K. W., Johnson, G. V, & Solie, J. B. (2005). Evaluation of Green, 
Red, and Near Infrared Bands for Predicting Winter Wheat Biomass, Nitrogen Uptake, and Final Grain Yield. 
Journal of Plant Nutrition, 27(8), 1431–1441. https://doi.org/10.1081/PLN-200025858 

Montès, N., Ballini, C., Bonin, G., & Faures, J. (2004). A comparative study of aboveground biomass of three 
Mediterranean species in a post-fire succession. Acta Oecologica, 25(1), 1–6. 
https://doi.org/https://doi.org/10.1016/j.actao.2003.10.002 

Moore, V. M., & Mirsky, S. B. (2020). Cover crop biomass production across establishment methods in mid-Atlantic 
corn. Agronomy Journal, 112(6), 4765–4774. https://doi.org/https://doi.org/10.1002/agj2.20414 

Motew, M., Chen, X., Booth, E. G., Carpenter, S. R., Pinkas, P., Zipper, S. C., Loheide, S. P., Donner, S. D., Tsuruta, 
K., Vadas, P. A., & Kucharik, C. J. (2017). The Influence of Legacy P on Lake Water Quality in a Midwestern 
Agricultural Watershed. Ecosystems, 20(8), 1468–1482. https://doi.org/10.1007/s10021-017-0125-0 

Muñoz, J. D., Finley, A. O., Gehl, R., & Kravchenko, S. (2010). Nonlinear hierarchical models for predicting cover crop 
biomass using Normalized Difference Vegetation Index. Remote Sensing of Environment, 114(12), 2833–2840. 
https://doi.org/https://doi.org/10.1016/j.rse.2010.06.011 

Murrell, E. G., Schipanski, M. E., Finney, D. M., Hunter, M. C., Burgess, M., LaChance, J. C., Baraibar, B., White, C. 
M., Mortensen, D. A., & Kaye, J. P. (2017). Achieving Diverse Cover Crop Mixtures: Effects of Planting Date and 
Seeding Rate. Agronomy Journal, 109(1), 259–271. https://doi.org/https://doi.org/10.2134/agronj2016.03.0174 

Mutanga, O., & Skidmore, A. K. (2004). Narrow band vegetation indices overcome the saturation problem in biomass 
estimation. International Journal of Remote Sensing, 25(19), 3999–4014. 
https://doi.org/10.1080/01431160310001654923 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

15 

Myers, R., & Watts, C. (2015). Progress and perspectives with cover crops: Interpreting three years of farmer surveys 
on cover crops. Journal of Soil and Water Conservation, 70(6), 125A--129A. 
https://doi.org/10.2489/jswc.70.6.125A 

OSUE. (2021). Soil Health Indicator Measurement Protocols. 
https://digitalag.osu.edu/sites/digitag/files/imce/publications/Soil_Health/OSUE - Soil Health Indicator 
Measurement Protocol.pdf 

Patrignani, A., & Ochsner, T. E. (2015). Canopeo: A powerful new tool for measuring fractional green canopy cover. 
Agronomy Journal, 107(6), 2312–2320. https://doi.org/10.2134/agronj15.0150 

Pix4D. (2022). Pix4Dmapper. https://www.pix4d.com/product/pix4dmapper-photogrammetry-software 
Plastina, A., Liu, F., Miguez, F., & Carlson, S. (2020). Cover crops use in Midwestern US agriculture: perceived benefits 

and net returns. Renewable Agriculture and Food Systems, 35(1), 38–48. https://doi.org/DOI: 
10.1017/S1742170518000194 

Prabhakara, K., Dean Hively, W., & McCarty, G. W. (2015). Evaluating the relationship between biomass, percent 
groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. 
International Journal of Applied Earth Observation and Geoinformation, 39, 88–102. 
https://doi.org/10.1016/j.jag.2015.03.002 

Roesch-Mcnally, G. E., Basche, A. D., Arbuckle, J. G., Tyndall, J. C., Miguez, F. E., Bowman, T., & Clay, R. (2018). 
The trouble with cover crops: Farmers’ experiences with overcoming barriers to adoption. Renewable Agriculture 
and Food Systems, 33(4), 322–333. https://doi.org/10.1017/S1742170517000096 

Rosle, R., Che’Ya, N. N., Roslin, N. A., Halip, R. M., & Ismail, M. R. (2019). Monitoring Early Stage of Rice Crops 
Growth using Normalized Difference Vegetation Index generated from UAV. IOP Conference Series: Earth and 
Environmental Science, 355(1), 12066. https://doi.org/10.1088/1755-1315/355/1/012066 

Roth, L., & Streit, B. (2018). Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: an 
applied photogrammetric approach. Precision Agriculture, 19(1), 93–114. https://doi.org/10.1007/s11119-017-
9501-1 

Rouse, J. W., Haas, R. H., Deering, D. W., Schell, J. A., & Harlan, J. C. (1974). Monitoring the vernal advancement 
and retrogradation (greenwave effect) of natural vegetation. https://doi.org/No. E75-10354 

Ruis, S. J., Blanco-Canqui, H., Creech, C. F., Koehler-Cole, K., Elmore, R. W., & Francis, C. A. (2019). Cover Crop 
Biomass Production in Temperate Agroecozones. Agronomy Journal, 111(4), 1535–1551. 
https://doi.org/https://doi.org/10.2134/agronj2018.08.0535 

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461–464. 
https://doi.org/10.1214/aos/1176344136 

Sekaluvu, L., Zhang, L., & Gitau, M. (2018). Evaluation of constraints to water quality improvements in the Western 
Lake Erie Basin. Journal of Environmental Management, 205, 85–98. 
https://doi.org/https://doi.org/10.1016/j.jenvman.2017.09.063 

Sellaro, R., Crepy, M., Trupkin, S. A., Karayekov, E., Buchovsky, A. S., Rossi, C., & Casal, J. J. (2010). Cryptochrome 
as a Sensor of the Blue/Green Ratio of Natural Radiation in Arabidopsis. Plant Physiology, 154(1), 401–409. 
https://doi.org/10.1104/pp.110.160820 

Singer, J. W. (2008). Corn Belt Assessment of Cover Crop Management and Preferences. Agronomy Journal, 100(6), 
1670–1672. https://doi.org/https://doi.org/10.2134/agronj2008.0151 

Smith, D. R., King, K. W., Johnson, L., Francesconi, W., Richards, P., Baker, D., & Sharpley, A. N. (2015). Surface 
Runoff and Tile Drainage Transport of Phosphorus in the Midwestern United States. Journal of Environmental 
Quality, 44(2), 495–502. https://doi.org/https://doi.org/10.2134/jeq2014.04.0176 

St Aime, R., Noh, E., Bridges, W. C., & Narayanan, S. (2022). A Comparison of Drill and Broadcast Planting Methods 
for Biomass Production of Two Legume Cover Crops. Agronomy, 12(1). 
https://doi.org/10.3390/agronomy12010079 

Staver, K. W., & Brinsfield, R. B. (1998). Using cereal grain winter cover crops to reduce groundwater nitrate 
contamination in the mid-Atlantic coastal plain. Journal of Soil and Water Conservation, 53(3), 230–240. 
https://www.jswconline.org/content/53/3/230 

Stroup, W. (2013). Generalized Linear Mixed Models: Modern Concepts, Methods andAapplications (1st ed.). 
Chapman & Hall/CRC Press. 

Teshome, F. T., Bayabil, H. K., Hoogenboom, G., Schaffer, B., Singh, A., & Ampatzidis, Y. (2023). Unmanned aerial 
vehicle (UAV) imaging and machine learning applications for plant phenotyping. Computers and Electronics in 
Agriculture, 212, 108064. https://doi.org/https://doi.org/10.1016/j.compag.2023.108064 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

16 

Thaler, E. A., Kwang, J. S., Quirk, B. J., Quarrier, C. L., & Larsen, I. J. (2022). Rates of Historical Anthropogenic Soil 
Erosion in the Midwestern United States. Earth’s Future, 10(3), e2021EF002396. 
https://doi.org/https://doi.org/10.1029/2021EF002396 

Tucker, C. J., & Sellers, P. J. (1986). Satellite remote sensing of primary production. International Journal of Remote 
Sensing, 7(11), 1395–1416. https://doi.org/10.1080/01431168608948944 

USDA. (2018). Summary Report: 2017 National Resources Inventory. 
USDA. (2024). Agriculture in the Midwest. https://www.climatehubs.usda.gov/hubs/midwest/topic/agriculture-midwest 
USDA NRCS. (2022). Soil Survey Geographic (SSURGO) Database for Ohio. 

https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx 
Wallander, S., Smith, D., Bowman, M., & Claassen, R. (2021). Cover Crop Trends, Programs, and Practices in the 

United States. https://doi.org/10.22004/ag.econ.309562 
Wilson, M. L., Baker, J. M., & Allan, D. L. (2013). Factors Affecting Successful Establishment of Aerially Seeded Winter 

Rye. Agronomy Journal, 105(6), 1868–1877. https://doi.org/https://doi.org/10.2134/agronj2013.0133 
Woebbecke, D., Meyer, G., Von Bargen, K., & Mortensen, D. (1995). Color Indices for Weed Identification Under 

Various Soil, Residue, and Lighting Conditions. Transactions of the ASAE, 38(1), 259–269. 
https://doi.org/https://doi.org/10.13031/2013.27838 

Yang, R.-C. (2010). Towards understanding and use of mixed-model analysis of agricultural experiments. Canadian 
Journal of Plant Science, 90(5), 605–627. https://doi.org/10.4141/CJPS10049 

Zhang, J., Qiu, X., Wu, Y., Zhu, Y., Cao, Q., Liu, X., & Cao, W. (2021). Combining texture, color, and vegetation indices 
from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods. 
Computers and Electronics in Agriculture, 185, 106138. 
https://doi.org/https://doi.org/10.1016/j.compag.2021.106138 

Zhou, Q., Guan, K., Wang, S., Jiang, C., Huang, Y., Peng, B., Chen, Z., Wang, S., Hipple, J., Schaefer, D., Qin, Z., 
Stroebel, S., Coppess, J., Khanna, M., & Cai, Y. (2022). Recent Rapid Increase of Cover Crop Adoption Across 
the U.S. Midwest Detected by Fusing Multi-Source Satellite Data. Geophysical Research Letters, 49(22), 
e2022GL100249. https://doi.org/https://doi.org/10.1029/2022GL100249 

 
 
 

 


