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ABSTRACT 
 
     Yield maps are commonly collected by producers and precision-agriculture 
service providers and are accumulating in warehouse scale data-stores. A key goal 
in analysis of yield maps is to understand how climate interacts with soil 
landscapes to cause spatial and temporal variability in grain yield. However, there 
are many issues that limit utilization of yield map data for this purpose including: 
i) yield-landscape inversion between climate years, ii) sensor system malfunction 
and inaccuracy, iii) poor data management practices and operator error, iv) field 
configuration and logistical limitations, v) spatial, temporal, and producer 
variability in agronomic management, and vi) incomplete target and predictor 
dataspace. Each of these issues requires a significant effort to understand and then 
address by the commercial and research precision agriculture community. A key 
goal of this investigation was to use a regional extent yield map data warehouse to 
model the effects of soil landscape properties on site specific mean yield and yield 
risk. Data mining technologies were used to examine relationships between yield 
map data and soil landscape attributes. Our initial results indicate challenges in 
training data mining algorithms to produce stable estimates when applied to 
independent testing data both within and across years. We found the above factors 
reduce the effectiveness of data mining approaches. To improve this situation, we 
propose a more stringent data cleansing procedure and a more agronomically 
complete yield map data model to better populate important predictive 
information in yield map databases. 
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INTRODUCTION 
 
     Yield maps are an information-rich data source which can describe the 
integrated effects of climate and soil landscape properties on crop performance. 
They are now commonly collected by producers and precision agriculture service 
providers in warehouse scale data-stores and are multi-temporal due to yearly 
accrual. For over a decade now researchers have been searching for ways to use 
soil and landscape information to model variation in small collections of yield 
maps (Kravchenko and Bullock, 2000; Serele et al., 2000; Drummond et al., 
2003; Irmak et al., 2006; Green et al., 2007; Norouzi et al., 2009). Successful and 
global models would be useful to quantitatively inform management decisions. 
However, the most common use of yield maps remains the qualitative appraisal of 
spatial and temporal yield variation. Warehouse scale collections of yield maps 
can be overwhelming for producers and agronomists to cope with or analyze. 
Large spatial and temporal variability can also challenge quantitative approaches 
to yield map use (Florin et al., 2009). Data mining algorithms offer a potential 
solution to this problem, but lack of suitable predictors, and errors and noise in 
yield map data may limit their utility. 
 

Objectives 
 
     Our initial goal for this investigation was to use a regional yield map data 
warehouse to model the effects of soil landscape properties on yield and yield 
risk. This has led to a synthesis of present issues with the use of data mining 
algorithms on a large regional extent yield map data warehouse. From this we 
have developed an objective to propose some potential solutions for improving 
mining of yield map data. The specific objectives were to: 
 

1. Model corn yield map variation with soil and landscape variables 
using a random forest algorithm. 

2. Present a more agronomically complete yield map data model. 
 

MATERIALS AND METHODS 
 

Yield Map Data 
 
     Yield data were collected from producers in northeast Missouri (fig. 1) either 
directly or through their precision ag service providers. Yield data was received in 
native yield monitor file formats (e.g. *.yld, *.ilf, ,*gsy). Yield monitor files and 
the raw yield maps within them retained whatever settings, calibrations, and 
filters were applied in the field by the producer. Yield monitor files were imported 
into commercial yield mapping software (Ag Leader Technology, 2011) and 
fields/loads were processed and calibrations applied with all software filters 
disabled. Raw yield maps were exported in text format for cleaning. Exported 
yield maps were processed individually using Yield Editor 1.02 (Drummond and 
Sudduth, 2012). Key filters applied with this software included min-max, start and 
end pass delay, and thresher flow delay, all performed by the visual methods 



outlined in Sudduth and Drummond (2007). Obvious bad data points and transects 
were manually removed with the selection tools in Yield Editor. These may have 
included point rows with unknown width, edge rows of headlands, transects on 
terraces, and small isolated field areas. Yield maps were aggregated into rasters at 
10 meter resolution by nearest neighbor averaging for data mining procedures. 
Training and testing datasets were selected from the yield maps by stratifying 
them into producer and year and randomly selecting 70% of these strata as 
training data with the remaining 30% as testing data. From within these groups we 
randomly selected 5% of the data points to train and test models. Table 1 lists 
some general information about the yield map warehouse. Figure 1 shows the 
spatial distribution of the yield maps within the counties of Northeast Missouri. 
 
Table 1.  General statistics describing the size of the yield map dataset used 
for this study. 
 

Crop Producers Field Years Acre Years 
Corn 21 769 50,640 
Soybean 21 1,525 63,500 

 
Soil Landscape Data 

 
     Soil property and geomorphological variables were collected and/or calculated 
for use as predictors in data mining procedures. Digital terrain model (DTM) 
attributes were derived from the USGS National Elevation Dataset at both 10 and 
30 m resolution. Extent of the DTM calculation procedures included the full area 
of all watershed basins intersected by the counties in Figure 1. Not all DTM 
attributes could be calculated at the 10 meter resolution due to processing 
limitations. Selected soil properties were joined from the SSURGO map unit 
attributes. See table 2 for a complete listing of the predictors and references. 
 

Data Mining Analysis 
 
     For the purposes of this paper we limited our analysis to the corn yield map 
data from years 2002 to 2009. Random forest (Breiman, 2001) was chosen as a 
representative data mining procedure to demonstrate issues with modeling grain 
yield map data with soil landscape properties. Random forest is an ensemble 
learning technique whereby random selections of predictors and training 
observations are used to develop a population of regression trees. The predictions 
from the trees are combined to develop the final fitted model. We used a parallel 
implementation of the random forest algorithm (Liaw and Wiener, 2002) to 
manage the large size of the modeling task and to facilitate parameter tuning with 
multiple runs of the procedure. Random forest models were fitted for each year as 
well as across all years. 
 



 
Figure 1.  Location of the study area and approximate spatial distribution of 
yield maps aggregated by county. 
 
Table 2.  List of the predictor variables used to model soil-landscape effects 
on corn yield monitor data. 

Type Predictor Detail 
Procedure 
Reference 

Digital 
Terrain 
Attributes 

Elevation 10, 30 m Gesch, 2007 
Slope 10, 30 m Tarboton, 1997 
Avg., Planform and Profile 
Curvature 

10, 30 m Zevenbergen and 
Thorne, 1987 

Catchment Area and Height, 
Length of Slope, Flow Accum. 

10, 30 m Freeman, 1991 

Compound Topographic Index 10, 30 m Boehner et al., 2002 
100 m Local Elev. and Deviation 10, 30 m Boehner et al., 2009 
Baseline Subtracted Elev., 
Baseline Normalized Elev., Cell 
Balance 

30 m Boehner et al., 2009 

Downslope Distance Gradient 30 m Hjert et al., 2004 
Terrain Ruggedness Index 30 m Riley et al., 1999 
Multi-res. Valley Bottom 
Flatness, Multi-res. Ridge Top 
Flatness 

30 m Gallant and 
Dowling, 2003 

Diurnal Anisotropic Heating, 
Incoming Solar Rad., Diffuse 
Insolation, Direct Insolation 

30 m Boehner et al., 2009 

Soil Map 
Unit 
Attributes 

Slope, Flood Freq., Avail. Water  
(25, 50, 100, 150 cm), Drainage 
Class, Hydrologic Group 

- Soil Survey Staff, 
2012 



RESULTS AND DISCUSSION 
 
     Yearly statistics about the corn yield maps used in this study are shown in 
table 3. Number of yield maps varies from year to year due to increasing adoption 
of yield monitors throughout the study period. Several hundred thousand yield 
data points were collected for most years. Across all years the mean yield was 
132.8 bu acre-1 and standard deviation of mean yield was 30.5 bu acre-1. These 
results are typical of the Central Claypan Areas of Missouri and Illinois from 
where the data are collected. The soil landscape in this region has large variation 
in topsoil depth over an argillic horizon with 55 to 65 % clay content. The subsoil 
argillic horizons limit productivity due to early season wetness from a perched 
water table that can cause spatially variable de-nitrification, disease, and 
emergence problems. This condition occurred in 2002 when yields averaged 105 
bu acre-1 for Missouri, and 121 bu acre-1 for the yield maps in our dataset. The 
high water tension imparted by the clay minerals in the subsoil also can 
exacerbate late season drought such as seen in 1999 when corn yields averaged 97 
bu acre-1 for Missouri and 73 bu acre-1 for the yield maps. 
 

Random Forest Data Mining 
 
     Random forest models exhibited excellent performance on the training data, 
but largely failed on the independent test data (table 4) indicating severe over-
fitting to the training cases. This was true for models fitted within and across 
years (figure 2). Potential causes are pseudoreplication and spatial autocorrelation 
among the training observations, and an overall lack of information in the 
 
Table 3.  Yearly statistics from cleaned corn yield map data describing the 
mean yield, median minimum and maximum yields, and median 
interquartile range (IQR) in yield among the corn yield maps used for this 
study. 
Year Fields n Mean St. Dev. Min Max IQR 
1996 2 35963 136.7 18.3 25.7 205.2 21.7 
1997 12 153269 127.4 24.9 53.3 200.4 24.2 
1998 30 283085 125.7 41.6 20.5 212.4 39.0 
1999 56 412321 73.3 35.2 14.0 152.5 37.2 
2000 52 329392 161.3 35.4 53.6 237.5 26.2 
2001 34 313808 130.2 29.1 37.2 201.2 28.1 
2002 50 378780 121.1 33.5 39.8 205.0 26.7 
2003 83 719510 125.3 44.9 27.3 209.9 31.3 
2004 50 392150 171.3 45.6 56.0 261.8 39.8 
2005 54 400383 78.0 34.3 11.0 159.0 24.2 
2006 93 756140 151.6 38.2 30.9 236.2 25.7 
2007 95 603950 124.5 42.5 20.2 215.3 30.7 
2008 77 601250 154.5 40.8 29.6 241.2 39.2 
2009 83 429398 178.3 37.3 56.0 259.7 33.5 

  



predictors relative to the noise in corn yield response. This suggests that the soil-
landscape signal is not strong enough to drive the models, or that it is too unstable 
between fields and/or years. Autocorrelation is likely a significant contributor to 
over-fitting and a different modeling or sampling approach may be warranted. 
However, significant evidence exists for noise in the yield relationship to the soil-
landscape signal. We plan to pursue the autocorrelation problem, but here we 
examine issues that may mask the soil-landscape effect on corn yield models 
developed from yield map collections. These issues can be considered in three 
general classes. First there are real landscape effects that lead to contradictory 
responses in different climate years. Second there are issues with yield map data 
that interfere with modeling. Third, yield maps generally do not carry important 
contextual details about the crop that could be used as predictors in an analytical 
model. Here we expand in some detail on the second and third points. 
 
Table 4.  Training and testing results of random forest models fitted from 
soil-landscape attributes. 

 
Train Test 

Year R2 RMSE R2 RMSE 
  bu acre-1  bu acre-1 

2002 0.093 6.3 0.03 22.3 
2003 0.96 6.2 -0.19 35.8 
2004 0.97 6.1 -0.24 28.3 
2005 0.94 5.9 -0.98 25.5 
2006 0.95 5.9 0.39 22.8 
2007 0.95 6.5 0.28 26.7 
2008 0.94 6.7 0.35 26.8 
2009 0.94 6.4 0.52 20.2 
1998-2009 0.89 11.1 -0.02 35.9 

 
 

 
Figure 2. Training and testing results for random forest models of corn yield 
for years 1998 to 2009.  



Yield Inversion Masks Soil Landscape Relationships 
 
     Soil landscapes in the study area have a well-documented effect on corn yield 
(Kitchen et al., 2003; Jung et al., 2006). Key factors are early season wetness and 
late season drought and how they interact with the landscape. Heat stress during 
the silking period can cause reduced pollination and shorter ears. Any of these 
conditions may or may not occur within a single growing season. Confounding 
these effects is the landform correlated variation in depth to claypan. The claypan 
is moderately deep (30 to 40 cm) on flat upland divides, more shallow on 
shoulders and upper backslopes (20 to 30 cm), minimal on eroded backslopes (0 
to 20 cm), increases at lower backslope positions (20 to 30 cm), and is deep to 
very deep on footslope and depositional soils (30 to 100 cm). This variation leads 
directly to spatial variation in lateral water movement across the claypan as well 
as in available water capacity (Jiang et al., 2007). 
     These complicated landscapes cause a ‘yield inversion’ effect between climate 
years. For example, yield at backslope locations may be very poor in years with 
severe drought. Adjacent areas with deeper topsoil and greater water holding 
capacity and supply will produce a greater yield. However, in very wet years, 
yield from backslope locations may exceed yield from depositional and summit 
soils where de-nitrification severely limits productivity. Figure 3 demonstrates the 
year to year variation in corn response to general landscape positions. Soil-
landscape yield inversions are evident comparing 2001 and 2009 corn yield. The 
relationship of corn yield to landscape position is unstable year-to-year. 
 

 
Figure 3.  Yearly boxplots of corn yield for common landscape positions 
demonstrate the spatial variation of yield across landscape positions is not 
stable year-to-year.  



Yield Map Issues that Interfere With Modeling 
 
     Due to our experience with collecting, cleaning, and analyzing a large 
collection of yield maps we have observed a wide range of issues that are not 
related to natural soil-landscape processes. 
 
Yield Monitoring System Malfunction and Inaccuracy 
 
     Failures to the yield monitoring system commonly result in lost or poor quality 
yield data. This is demonstrated in the yield map in figure 4,a. Yield maps such as 
this can be a result of GPS system failure, a full storage card, an unplugged or 
broken cable, or in the case of this specific map, due to inadequate voltage 
supplied to the yield monitor as a consequence of alternator failure. Grain 
producers are taxed at harvest time to get their crops out in a timely fashion under 
optimal conditions and tend to stretch across larger acreages to benefit from 
economies of scale. Yield monitor failure does not prevent harvesting equipment 
from functioning and unless the combine itself is broken, the pressures of harvest 
usually compel producers to proceed without data collection. Missing fields are 
missing climate years in a temporal sequence of yield maps and can bias an 
analysis of soil-landscape effects. 
     Detailed management of GPS equipment, yield monitoring electronics, 
sensors, software, firmware, and sensor calibration is required in order to obtain 
accurate yield maps. Previous research has indicated problems with producer 
implementation of calibration procedures (Grisso et al., 2002). Points of failure 
are inadequate range of flow rates for calibration loads and no re-calibration as 
harvest conditions change. Incorrectly calibrated yield maps introduce biased 
yield measurements that can foil modeling of soil-landscape effects. The 
calibration quality of the yield maps in our collection is unknown. 
 
Data Management Practices and Operator Error 
 
     An organized approach to data collection and management can prevent errors 
from getting into yield map databases and clouding analytical results. One key 
problem producers had was correctly inputting field names and crop types when 
harvesting new field areas. Figure 4,b demonstrates this problem. The two yield 
maps shown were harvested under the same field name and identified in the yield 
map as corn. However, they were planted with two different crops. The result is 
that a corn grain calibration was applied to the soybean field by the yield monitor 
before exporting. This field would become an outlier in a modeling procedure. 
Figure 4,c shows some additional outliers from our database of soybean fields. 
Data from multiple years are plotted against elevation. The data points circled in 
red are most likely corn fields that were harvested as soybean and processed with 
a corn calibration. These issues can be prevented if field names, crop types, and 
as-planted boundaries are pre-configured before the harvest season. If not 
screened, these errors can cripple the effectiveness of analytical procedures. 
 



 
Figure 4.  a) Yield monitor failure leads to missing data. b) These fields were 
harvested as a single corn field. The operator failed to change the crop when 
entering the soybean field causing the corn calibration to be applied. c) 
Circled data are from corn fields identified as soybean but with a corn 
calibration applied. 
 
 
Field Configuration and Logistical Activity 
 
     Field configuration, modification, and logistical realities may be critical causes 
of difficulty in modeling soil landscape effects on yield. The natural productivity 
of a soil landscape can be masked by headlands, tree lines, and field entrances. 
These types of features are related to the field shape and can have markedly 
greater impact on landscapes where field sizes are smaller and more irregular. 
Irregular field shapes caused more overlapping during planting and inaccuracy in 
yield maps due to more frequent ‘point rows’. Point rows lead to unknown swath 
sizes, and may cause inaccurately estimated yield because grain flow rates are at 
the extreme edge of the yield sensor’s calibration range. Point rows are also more 
common in fields with extensive terracing. Terraces cause further unnatural 
effects on the soil-landscape interactions with yield due to physical changes in the 
soil and geomorphology as well as changes in water movement on the landscape. 
Field leveling, tiling, and ditching also confound the natural response of crops to 
soil variability. 
     Fields in our study area and in our yield data warehouse commonly 
demonstrate some of the issues described above. Field shapes often follow the 
contours of drainages, waterways, and rolling terrain. The yield map in figure 5,a 
depicts an extensively terraced field with yield transects having alternately very 
high (green) and low (red) yields. Either of these conditions may be different than 
the natural soil would have produced as soils are disturbed and compacted or  



 
Figure 5. a) Yield variation due to terracing. b) Yield variation between 
similar soil landscapes due to headlands. 
 
drainage is modified due to the terrace. The terrace design and skill of the dozer 
operator can have a potentially large impact on this effect. Figure 5,b indicates 
three similar landscape positions with very different yields identified by arrows. 
The lower left corner of the field is an area of relatively flat deep topsoil where 
yields are around 140 bu a-1. The left and right edges of this field are on similar 
landscape positions but are headlands with yield approaching 0 bu acre-1. The 
yield measurements at these locations represent noise in the soil-landscape 
relationship to yield simply because of the logistical requirement to turn planting, 
spraying, and harvesting equipment at the field edge. Screening areas such as 
terraces and headlands may improve the data mining results presented here. 
Harvesting with high fidelity positioning systems including RTK correction and 
gyroscopic tilt compensation would improve the post-processing of yield monitor 
swath dimensions, allow better detection of overlapping, and provide more 
accuracy in yield maps with terracing and point rows. 
 
Spatial, Temporal, and Producer Variability in Management 
 
     Variability in management techniques and timing both within and between 
producers introduce crop response effects not specifically related to soil-
landscape properties. Some of these management activities are tillage, irrigation, 
variety, and pest management. Perhaps the largest problem with yield map data is 
a lack of detail about planting date or conditions. Soil conditions at planting can 
determine germination success and final plant population. Planting date can have 
a very significant impact on the climate interaction at a field specific level. For 
instance within the same climate year, later planting of corn may avoid early 
season emergence problems due to wet and cold conditions, while early planting 
may avoid hot dry weather during the short but sensitive pollination period. 
Planting dates can even be variable within the same field. Figure 6,a shows 
several areas harvested as a single field. They were planted on an initial date 
indicated by the red polygons (fig. 6,b), which also underlie the areas in green. 
The green polygons indicate areas that were then re-planted at a later date.  



 
Figure 6.  a) Yield maps harvested under a single field name and, b) as-
planted maps for the same fields. These areas were planted on an initial date 
indicated by the red polygons also underlying all of the area in green. The 
green polygons indicate areas that were then re-planted at a later date. 
 
Together, these images convey some critical data that are not present in the yield 
maps alone. 
     First, the soil landscape effects on yield are likely different between the red 
and green areas. A hiatus in planting activity or a replanting event may lead to a 
significant difference in the yield on similar adjacent landscape positions. 
Planting date determines the synchrony between the phonological stages of the 
crop development and the within season climate variation. None of our yield 
maps carry these critical pieces of information that might be predictive in a data 
mining algorithm. Second, the economics and production risk are worse for the 
replanted area. Site-specific profitability cannot be determined without data on 
replanting activity. Further, site-specific productivity risk cannot be accurately 
estimated by a model without considering the impact of whole field losses due to 
climate disasters. The later cases have no yield maps at all, yet have a major 
impact on risk assessment. 
 
Incomplete Target and Predictor Dataspace 
 
     Analytical models require a connection or correlation to exist between the 
target variable and the predictors, but also require that the correct or full set of 
predictors is collected. The target and predictors must also be collected with 
adequate range. In the context of modeling soil landscape effects on yield maps 
this means collecting maps from all landscape positions in a representative set of 
climate years. The predictors should represent the full set of processes happening 
in the landscape or effectively stratify the population of yield maps into major 
response groups (e.g. irrigated versus non-irrigated). Some of the issues discussed 
above could be handled in a modeling procedure if information was present to be 
included in the model. For example, planting date may be the single most 



important information we lack in retrospective analysis of site specific 
productivity risk. Effects of climate interaction with soil-landscape might be 
better resolved if planting date was known because the climate year is initialized 
at the planting date. Another example of contextual data about a corn yield map 
that would be useful for modeling is data on the N application rate and timing. 
After soil moisture, nitrogen fertility is the single most critical determinant of 
corn yield. Models of soil-landscape effects on corn must assume adequate and 
persistent N availability for all fields equally in the absence of predictor variables 
that convey N status and explain variability due to that process. 
     Based on examination of the yield maps and unexplained variation after data 
mining we suggest that yield maps need an expanded yield map data model. The 
model should contain the management and climate information needed to better 
explain corn productivity and productivity risk due to soil-landscape properties 
for improved modeling. In the next section we provide some recommendations for 
the construction of yield data warehouses, and a yield map data model. 
 

The Yield Map Data Model 
 
     The items that make up the yield map data model are a mix of point, polygon, 
raster and tabular data. Fusing these diverse data types into a comprehensive data 
model is complex but achievable within available software systems and with 
existing generalized data models such as the Field Operations Data Model (Map 
Shots, Inc, 2002). Initialization of the yield map data model occurs in spring 
before planting. It is fully populated by the events of the entire growing season. A 
proposed data dictionary for a yield map data model follows. 
     Field:  The outermost bound of an area where crops are planted, important for 
planning and logistical purposes. Defining a field is a crucial step in preparing for 
the growing season in an organized manner. Field computers, planter controllers, 
and yield monitors should be initialized with the proper fields before operations. 
The field boundary is important in that it can attribute yield maps with uniform 
management information or for purposes of accounting, crop insurance, or other 
logistical directives. However, field is not always the unit of primary interest. 
Fields can commonly be split by hybrid, crop, or by hiatus in planting activity due 
to breakdown or weather factors. Replanting activities also commonly cover only 
sections of a field. Further, harvesting operations that do not cover a planted area 
in a short time frame may result in the need to analyze by different harvest dates 
due to crop losses that can occur between the harvest dates. 
     As-planted map:  The spatial entity that attributes yield map data with crop, 
planting date, variety, seeding rate, starter fertilizer rate, planting conditions, 
down pressure, or other variable and non-variable attributes recordable at 
planting. The as-planted map can be a set of points or polygons representing the 
field area covered by sections of a planter. It could also be a set of line features 
representing the exact location of planted rows. This may soon be the exact 
location and attributes of a planted seed. The as-planted data should be considered 
an integral component of the yield map. 
     As-replanted maps:  Similar to the as-planted map including as many as 
necessary for multiple dates with all of the same data in from as-planted maps. 



     Fertility status and or nitrogen application:  Field specific or spatially 
variable information about plant available nutrients and N applications. The single 
most important agronomic consideration in analysis of corn yield data is the N 
status of the crop. 
     Pesticide application and effectiveness:  As-applied maps or field boundary 
maps attributed with timing of fungicide, insecticide and herbicides applications. 
This might also include whole field ratings or spatial maps of pesticide 
effectiveness from field scouting. A low pesticide effectiveness rating might be 
useful as a screening variable or predictor in a data mining situation. 
     Climate/Irrigation data:  Season long local or field specific measurements of 
rainfall, irrigation schedule, air and soil temperatures, soil moisture, and important 
climate events such as a hailstorm or frost damage. Climate metadata can be 
populated from a nearby climate network’s weather station if planting date is 
available. The yield data model should also permit storage of field or farm 
specific daily weather data when it is recorded from a dedicated producer owned 
weather station. The climate in which crops develop is critical information to 
retrospectively model productivity risk from a yield map data warehouse. 
     Crop phenological timeline:  Critical crop phonological stages such as 
emergence, major vegetative stages, major reproductive stages (e.g. tasseling, 
flowering, pod fill), and senescence should be tracked by as-planted areas. This 
could include maps showing spatial variability of key stages such as tasseling, 
flowering, or senescence obtained by remote imagery. The phonological timeline 
provides information about the length and progression of the growing season 
useful as in season predictive variables. 
     Yield map:  The target variables, grain yield and moisture measurements 
recorded by the yield monitor along with appropriate sentences from the NMEA-
0183 string (Trimble, 2004). The NMEA string includes the most important 
metadata, position, position accuracy, and time. A fuller NMEA string will allow 
post-processing and filtering of data points with poor accuracy. 
     Yield monitor settings:  Applied by producers in the software of yield 
monitors such as swath width, antenna position, filters, and thresher delay. 
     Yield monitor calibration metadata:  Calibration loads and measured weights, 
calibration models, accuracy and quality control statistics. Calibration metadata is 
particularly important at the data-warehouse stage as yield maps from a wide 
range of sources are aggregated. A few outlier maps with poor calibrations might 
have a large impact on some modeling procedures. Calibration quality might be 
used as a screening or weighting factor in a data mining procedure. 
     Raw data and version control: The raw data collected in the field is too often 
an ephemeral product that disappears when the yield monitor is cleared in the fall 
before or after harvest. Commonly, the producer will export the data from the 
monitor after application of some of the manufacturer provided data filters which 
may include GPS track correction, header up/down toggles, low and high pass 
filters, start and end pass delays, and (critically) a default or farmer specific 
thresher delay setting. Often these filters are selectable or have adjustable 
parameters which are not necessarily retained by the yield map data file after this 
point. Effectively the raw data is lost as only the processed yield map is retained. 
If the delay setting is wrong and start/end pass delays are enforced at export, then 
good data points are eliminated and correcting the delay leads to lost data at the 



start or end of a transect. This is further complicated if the producer or service 
provider knowingly or unknowingly applies additional filtering to the yield map 
in their desktop software. For these reasons raw uncorrected versions of the 
harvesting data should be retained. Processing, filtering and correcting of this data 
should be re-applied to the raw data as improvements are made, and version 
control should be implemented to maintain a history of events. 
 

SUMMARY AND RECOMMENDATIONS 
 
     Algorithms are inefficient at extracting information from predictors when 
noise or variation not characterized by the predictors is present in the target 
variable. Algorithms are challenged to make valid estimates for future cases when 
predictors are not available to explain certain signals in the target, or when the 
data-space does not span the full range of possible outcomes, and especially when 
the measured target variable is in error due to mistakes, and systematic or random 
noise. Yield data warehouses are prone to five general issues that cause problems 
for data mining or statistical analysis of soil-landscape effects on  yield and yield 
risk: 
 
i) yield-landscape inversion between climate years  
ii) sensor system malfunction and inaccuracy 
iii) poor data management practices and operator error 
iv) field configuration and logistical limitations 
v) spatial, temporal, and producer variability in agronomic management 
vi) incomplete target and predictor dataspace 
 
     Yield maps can be complex. They can have tens of thousands of data points 
with intricate spatial structure, yet even with all of this information, yield maps 
are difficult to analyze without fuller contextual details. How much rainfall was 
received? When did it fall? When was the planting date? These are just some of 
the more critical pieces of metadata that must be available to interpret the 
complex spatial and temporal patterns in individual yield maps. Producers may be 
able to manage these details for small collections of fields but as time passes, 
these details can become lost. As the number of yield maps increases, a dedicated 
yield map metadata system is needed. When the analyst of an entire population of 
yield maps is far removed from events in the field, contextual metadata about 
climate, crop phenology, and special issues must be organized and fully populated 
else quantitative interpretation and analysis are limited in their effectiveness. 
Adoption of a more agronomically complete yield map data model could improve 
analysis of yield map data warehouses. 
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