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ABSTRACT 
 
Due to rapid economic development, high levels of potentially harmful elements 
and heavy metals are continuously being released into the brown coal mining 
dumpsites of the Czech Republic. Elevated metal contents in soils not only 
dramatically impact the soil quality, but also due to their persistent nature and 
long biological half-lives, contaminant elements can accumulate in the food chain 
and can eventually endanger human health. Conventional methods for 
investigating potentially harmful element contamination of soil based on raster 
sampling and chemical analysis are time consuming and relatively expensive. 
Visible and Near-Infrared (Vis-NIR) diffuse reflectance spectroscopy provides a 
rapid and inexpensive tool to simultaneously and accurately predict various soil 
properties. In this study concentrations of Manganese (Mn), Copper (Cu), 
Cadmium (Cd), Zinc (Zn), Iron (Fe), Lead (Pb) and Arsenic (As) in soil samples 
from fields near the brow coal mining dumpsites in the Czech Republic were 
chemically analyzed and the suitability of Vis-NIR diffuse reflectance 
spectroscopy for predicting their occurrence was evaluated. Soil spectral 
reflectance was measured with an ASD FieldSpec 3 spectroradiometer (Analytical 
Spectral Devices, Inc., USA) under laboratory conditions and the correlations 
between seven toxic elements and soil diffuse reflectance spectra were studied. 
Partial Least Square Regression (PLSR) and Support Vector Machine Regression 
(SVMR) models were constructed to relate soil contaminants data to the 
reflectance spectral data by applying first and second derivatives preprocessing 
strategies. Then, the performance of Vis-NIR calibration models was evaluated by  
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Residual Prediction Deviation (RPD) and coefficients of determination (R2). 
Based on the correlation patterns with reflectance spectra, the seven studied 
potentially toxic elements were categorized into two or three groups. Moreover, 
according to the criteria of minimal RPD and maximal R2, the first derivative and 
SVMR models provided more accurate prediction models for soil contaminants 
than PLSR models which were more feasible to predict the toxic metal levels in 
agricultural soils. Overall, this study indicated that the Vis-NIR reflectance 
spectroscopy technique combined with a continuously enriched soil spectral 
library as well as a suitable chemometric indicator could be a nondestructive 
alternative for monitoring of the soil environment. Because soil properties in 
contaminated areas generally show strong variation, a comparatively large 
number of calibrating samples, which are variable enough and uniformly 
distributed, are necessary to create more accurate and robust Vis-NIR reflectance 
spectroscopy calibration models. Future studies with real-time remote sensing 
data and field measurements are also strongly recommended. 
 
 
Keywords:     Soil contamination, Visible and Near-Infrared, Partial least square 
regression, Support vector machine regression, Data preprocessing. 
 
 
 

INTRODUCTION 
 
     Among the various geo-environmental impacts of mining, heavy metal 
contamination of soil is by far the most significant effect. Elevated metal contents 
in soils not only dramatically impact on soil quality, but also due to their 
persistent nature and long biological half-lives, heavy metals can accumulate in 
the food chain and can eventually influence human health (Xie et al., 2012). 
Although the adverse effects of heavy metals have long been known and exposure 
to heavy metals continues and is even increasing in some areas, are now 
abandoned without particular safety measures and their environmental impact has 
been poorly studied. Consequently, monitoring of soil near metal smelter and 
mines is essential for environmental risk assessment and remediation. 
     Depending on large-scale sampling and physical or conventional analysis 
techniques, heavy metals concentrations in soils can be measured, but the 
negative point is that they are time-consuming, less efficient, and much more 
expensive when applied at a large scale in contaminated lands (Ren et al., 2009). 
In practice, sampling density and analytic diversity are frequently less than 
sufficient due to significant cost of analyses. 
     Diffuse reflectance spectroscopy technique is low cost with little or no sample 
preparation, and has been considered as an alternative to complement 
conventional soil analytical methods (Gholizadeh et al., 2013). It has shown to be 
a powerful tool for such studies in agricultural applications because it allows 
knowing the state of soil, providing results in real-time and on-site of interest due 
to its portability. Some researchers used Visible (Vis) and Near Infrared (NIR), 
ranging from 350 nm to 2500 nm to analyze the spectrally active properties of 
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sediment and soil samples. Toxic elements in soils can often be absorbed or 
bound by these spectrally active constituents (Song et al., 2012). This makes it 
possible to study the characteristics of metals in soils using Vis and NIR 
spectroscopy (Wu et al., 2005). Kemper and Sommer (2002) successfully used 
reflectance spectroscopy to estimate Arsenic (As), Iron (Fe), Mercury (Hg), Lead 
(Pb), Sulfur (S) and Antimony (Sb) contents in the Aznalcollar Mine area in 
Spain. Bray et al. (2009) also used Vis, NIR and Mid-Infrared (MIR) reflectance 
spectroscopy calibrated by ordinal logistic regression for the screening of either 
contaminated or uncontaminated soil at different thresholds for Copper (Cu), Zinc 
(Zn), Cadmium (Cd) and Pb. They believe that Vis-NIR can substantially 
decrease both the time and cost associated with screening for heavy metals. 
     Chemometrics methods are often needed to analyze the spectra characteristics 
of soil (Martens and Naes, 1989). Using a set of well-known calibration methods 
makes this process feasible. Choosing the most robust calibration technique can 
help to achieve a more reliable prediction model. Multiple Linear Regression 
(MLR) (Dalal and Henry, 1986), Principle Component Regression (PCR) (Pirie et 
al., 2005) or Partial Least Squares Regression (PLSR) (Song et al., 2012) have 
been use in the past to build models for estimating the toxic elements content of 
soil or sediments. All above-mentioned calibration methods require the creation 
of robust and generalized models due to their potential tendency to over-fit the 
data (Gholizadeh et al., 2013). Therefore; using a method such as Support Vector 
Machine Regression (SVMR) that can overcome the problems of other calibration 
methods seems essential. 
     To the best of our knowledge, SVMR technique has not yet been commonly 
used to analyse soil contamination, in the spectral domain. Therefore, this study 
was conducted to assess selected heavy metals namely, Manganese (Mn), Cu, Cd, 
Zn, Fe, Pb and As concentrations in anthropogenic soils on brown coal mining 
dumpsites, to evaluate the feasibility of Vis-NIR technique in the rapid prediction 
of above-mentioned contaminants in the soils and to compare the performance of 
PLSR and SVMR methods for multivariate calibrations using soil reflectance 
spectra. It was envisaged that this rapid and inexpensive method for obtaining 
accurate information of heavy metals would be valuable to provide reference data 
for soil environment monitoring by remote sensing. 
 

MATERIALS AND METHODS 
 

Study Area and Soil Sampling 
 
     Six dumpsites in Czech Republic were selected: PokrRN��5DGRYHVLFH��%ĜH]QR��
Merkur, PrXQpĜRY� DQG� 7XPHULW\�� $OO� DUH� IRUPHG� E\� FOD\V�� 2Q� D� SDUW� RI� HDFK�
dumpsite, cover with natural topsoil was spread in an amount of approximately 
2500 to 3000 t per ha one year before sampling. The topsoil material originated 
from humic horizons of natural soils of the region, particularly Vertisols, partly 
also Chernozems (clayic and haplic). The topsoil was not mixed with the 
dumpsite material. Disturbed and undisturbed soil samples were collected on all 
dumpsites randomly. Approximately half of the sampling points were located on 
the area with natural topsoil cover, half of the points were on the area without the 
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cover. Sampling was made in the 0 to 20 cm layer. This depth corresponds to 
common depth of ploughing soil layer, as these soils should be used as arable land 
in future. The depth of the topsoil cover, where it was applied, was also at least 20 
cm. 
 

Soil Analysis 
 
     The samples were air-dried and sieved through a 2 mm mesh. All samples 
were then saved for analyses of heavy metals (including Cu, Mn, Cd, Zn, Fe, Pb 
and As) and reflectance measurements. Total concentrations of heavy metals were 
determined by digesting soil samples (< 0.149 mm fraction) with a mixture of 
concerned hydrochloric and nitric acids (4:1, v:v) (Xie et al., 2012) and then 
analyzed by inductively coupled plasma mass spectrometry. 
 

Reflectance Spectroscopy Measurement 
 
     The reflectance was measured in 350-2500 nm wavelength range by a 
FieldSpec 3 spectroradiometer (Analytical Spectral Devices Inc., USA) with 
contact probe. The spectral resolution of the spectroradiometer was 3 nm for the 
region 350-1000 nm and 10 nm for the region 1000-2500 nm. A fiber-optic probe 
with 8° field of view was used to collect reflected light from the sample. The 
probe was mounted on a tripod and positioned about 10 cm vertically above the 
sample. The sample dish was over-filled with soils and then leveled off using a 
blade to ensure a flat surface flush with the top of the dish. The final spectrum 
was an average based on 20 iterations from 4 directions with 5 iterations per 
direction to increase the signal-to-noise ratio. 
 

Model Construction and Validation 
 
     For all samples, an exploratory analysis was carried out to detect outliers 
before establishing the regression model (Wu et al., 2005). 
     The correlation between heavy metals concentration and spectra reflectance 
was determined using Pearson's correlation. Univariate regression models were 
built for monitoring Mn, Cu, Cd, Zn, Fe, Pb and As, using reflectance in the Vis-
NIR region. 
     In order to calibrate a model that provides accurate predictive performance 
about the quantity of heavy metals contained in each soil sample, the captured soil 
spectra together with laboratory data of heavy metals were imported into R 
software (R Development Core Team, 2011) to be processed. From a total of 264 
samples taken for laboratory analysis, mostly subsets were used to determine the 
content of heavy metals due to cost constraints. Number of samples subjected for 
individual analysis was then as follows: the entire data were tested for Mn and Fe; 
148 samples were tested for Pb; 115 for Cu and Zn and 104 samples for Cd and 
As. Spectral preprocessing techniques are a variety of mathematical methods for 
correcting light scattering in reflectance measurements and data enhancement 
before the data was used in calibration models. The first derivative is very 
effective for removing baseline offset; the second derivative is very effective for 
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both the baseline offset and linear trend from a spectrum (Rinnan et al., 2009). In 
this study, prior to all further spectra treatments, the noisy part of the spectra 
range (350-399 nm) was cut out and then the spectra were subjected to Savitzky-
Golay smoothing with a second-order polynomial fit and 11 smoothing points 
(Ren et al., 2009; Song et al., 2012) in order to remove the artificial noise caused 
by the spectroradiometer instrument. The predictive models were fitted based on 
smoothed raw spectra first, and then using two types of preprocessed spectra as 
made with first and second derivative manipulation which were calculated using 
the Savitzky-Golay algorithm as well. Moreover, PLSR and SVMR models were 
employed to calibrate spectral data with chemical reference data and to establish 
relations between reflectance spectra and measured heavy metals. 
     Based on Viscarra Rossel et al. (2006a), PLSR handles multicollinearity, it is 
robust in terms of data noise and missing values, and in spite of PCR it balances 
the two objectives of explanation response and predictor variation (thus 
calibrations and predictions are more robust) and it presents the decomposition 
and regression in a single step. PLSR models were fitted with the pls R package 
(Mevik and Wehrens, 2007) using the classical orthogonal scores algorithm. To 
determine the optimal number of components the Root Mean Squared Error of 
Prediction (RMSEP) and Residual Prediction Deviation (RPD), ratio of the 
standard deviation and RMSEP, were minimized by leave-one-out cross-
validation (Xie et al., 2012). 
     The concept of SVMR follows a different approach of supervised learning. Its 
algorithm is based on the statistical learning theory (Vohland et al., 2011). It has 
been known to strike the right balance between accuracy attained on a given finite 
amount of training patterns and the ability to generalize to unseen data. The most 
valuable properties of SVMs are their ability to handle large input spaces 
efficiently, to deal with noisy patterns and multi-modal class distributions, and 
their restriction on only a subset of training data in order to fit a non-linear 
function (Gholizadeh et al., 2013). For SVMR prediction we used radial basis 
function kernel contained in e1071 R package (Meyer et al., 2012). 
 

Accuracy Assessment of Techniques 
 
     Assessment of the prediction accuracy of the models was carried out using a 
leave-one-out cross-validation approach (R2

cv and RMSEPcv) and also by the 
values of R2 and RPD. Root Mean Square Error of Cross-Validation (RMSEPcv) 
is the factor, by which the prediction accuracy has been increased, compared to 
the mean composition for all samples (Mouazen et al., 2010). The RMSEPcv was 
computed as follows: 

 

where y´i is the predicted and Yi is the observed value. 
 

3. RESULTS AND DISCUSSION 
 

Soil Samples Descriptive Statistics 
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     General statistical results of heavy metals in the six dumpsites are summarized 
in Table 1. 
 
Table 1. Descriptive statistics of heavy metals in the studied sample set 
according to location 

Item Cu Mn Fe Cd Pb Zn As 
 mg/kg 

Pokrok 
n 103  103 103 103 103 103 103 

Min 5.50 198.30 2503.41 0.01 7.60 8.30 0.49 
Max 35.70 869.14 9752.64 0.73 42.40 127.10 19 
Mean 13.76 599.42 5418.02 0.27 18.43 25.26 4.48 
Std. 3.58 118.61 1330.14 0.11 5.32 15.77 3.39 

C.V.(%) 26 20 25 40 29 62 76 
Radovesice 

n 40 40 40 40 40 40 40 
Min 6.42 254.12 1754.37 0.03 4.70 9.38 0.18 
Max 22.10 844.12 6876.94 0.30 49.60 66.85 1.30 
Mean 14.20 541.31 4489.27 0.17 13.70 21.98 0.67 
Std. 3.45 125.13 974.41 0.05 6.40 11.15 0.25 

C.V.(%) 24 23 22 30 47 51 38 
%ĜH]QR 

n 25 25 25 25 25 25 25 
Min 9.01 473.34 2398.50 0.00 10.90 11.49 0.49 
Max 38.81 885.84 31281.81 0.37 21.60 200.27 5.89 
Mean 14.37 680.98 9967.19 0.16 14.17 41.50 1.12 
Std. 5.95 105.93 103.58.19 0.11 2.97 41.62 1.04 

C.V.(%) 41 16 104 64 21 100 93 
Merkur 

n 38 38 38 38 38 38 38 
Min 7.29 317.99 2361.80 0.04 9.30 6.95 0.33 
Max 16.76 787.28 8047.71 0.27 55.90 32.22 9.57 
Mean 12.22 590 4852.73 0.16 17.53 13.56 0.97 
Std. 1.77 100.74 1355.59 0.06 7.23 4.19 1.45 

C.V.(%) 14 17 28 39 41 31 149 
PrunpĜRY 

n 48 48 48 48 48 48 48 
Min 8.40 41.59 2105.06 0.00 0.90 6.60 0.00 
Max 92.24 984 9225.44 0.24 24.80 213.11 3.30 
Mean 15.81 552.62 5532.46 0.11 14.38 26.83 0.98 
Std. 14.36 224.37 1595.54 0.06 4.82 39.32 0.86 

C.V.(%) 91 41 29 55 34 147 87 
Tumerity 

n 10 10 10 10 10 10 10 
Min 12.29 496.78 4163.75 0.00 9.50 15.50 0.37 
Max 20.34 1027.64 8484.29 0.20 14.50 48.56 0.51 
Mean 15.03 753.14 6702.30 0.12 12.25 25.61 0.42 
Std. 2.40 192.30 1426.63 0.05 1.38 10.32 0.05 

C.V.(%) 16 26 21 44 11 40 12 
 
     The comparison of Coefficients of Variation (C.V.) of different contaminants 
showed that among all parameters As had the highest C.V., especially in Merkur 



7 

area (149%) that means it has varied the most as compared to other measured 
parameters. Likewise, Pb in Tumerity (11%) had the lowest C.V. which shows it 
is more homogenous than the other properties. 
     In the study area, the estimated mean concentration of Cd (0.27 mg/kg), Pb 
(18.43 mg/kg) and As (4.48 mg/kg) in Pokrok was higher than other locations that 
might be a serious threat for agronomic practices on the soils beside the mining 
area. The mean concentration of Fe (9967.19 mg/kg) in the studied soil sample of 
%ĜH]QR was also high, which was probably related to the iron oxide-rich 
characteristic of the soil type and its forming. 
 

Vis-NIR Reflectance Spectroscopy of the Soil Samples and Data 
Preprocessing 

 
     A visual inspection of the spectra allowed detecting some spectral readings 
possibly affected by measurement errors. These were removed and the final 
spectral library had a total of 264 soil spectra. Raw reflectance, smoothed spectra 
by Savitzky-Golay and first and second derivative spectra of all selected soil 
samples in one of the locations (Pokrok) which had the most samples, are shown 
in Fig. 1. Other locations also showed the same trend. 
     Sets of spectra were characterized qualitatively by observing the positive and 
negative peaks (Fig. 1), which occur at specific wavelengths (Viscarra Rossel et 
al., 2006a). Due to the presence of the same spectrally active properties in all 
locations, the Vis-NIR spectra of all soil sample sets were similar. The 
characteristic wavebands of reflectance spectra were only around 1400, 1900, and 
2200 nm. However, there were more features of high variability at around 460-
550, 1400, 1900-2000 and 2200 nm in the first derivative. The second derivative 
more or less showed the same spectrum in all locations. Stenberg et al. (2010) 
also indicated that the first and second derivatives were by far the most popular 
spectral preprocessing techniques for soil property prediction using the Vis and 
NIR spectroscopy. 
     Generally, from the Fig. 1, it can be understood that three essential absorption 
bands are evident throughout all the compressed spectra (around 1400, 1900 and 
2200 nm). Also, the general shape and slopes of the all curves are similar. The 
regions around 1400 and 1900 nm were related to vibrational frequencies of OH 
groups in the water and hydroxyl absorption, and the features around 2000-2500 
nm were related to the characteristics of soil organic matter and clay minerals 
(Ren et al. 2009). Thus, preprocessed spectra highlighted more spectral features in 
the Vis region and made reflectance spectra narrower and sharper in the NIR 
region. Based on Song et al. (2012), although intense bands in the Vis-NIR 
spectra are not directly associated to the presence of metals or other constituents, 
it is clear that metals can interact with the main spectrally active components of 
soil. Based on this phenomenon, chemometrics models can be developed for soil 
samples in order to screen their toxic elements concentrations. Similar results 
were reported by Wu et al. (2005), Ren et al. (2009) and Song et al. (2012). 
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Fig.  1. Raw reflectance spectra, smoothed spectra by Savizky-Golay and 
preprocessed spectra of soil samples for Pokrok 

 
 

Matrix Correlation of Heavy Metals and Reflectance Spectra 
 
     Same as Song et al. (2012), linear correlation coefficients between reflectance 
and heavy metals were moderately high especially in %ĜH]QR (-0.6 < r < 0.6) 
throughout the Vis and NIR regions (Fig. 2). This indicates that heavy metals do 
contribute to the reflectance of almost all wavelengths. Fig. 2 also shows that the 
concentrations of toxic elements in six dumpsites soil samples displayed complex 
changes in their correlations with the Vis-NIR reflectance of soil spectra. 
Moreover, it can be seen that each metal exhibits its maximum correlation 
coefficient at a different wavelength. Correlation analysis also indicates that the 
correlation coefficients of the two elements Cd and Pb are usually separated from 
the other elements. 
     In each location the heavy metals could be categorized into two or three groups 
according to their behavior and relationships with soil Vis-NIR spectra. In 
Porkrok, the toxic elements categorized to two groups. The first group of metals 
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(Cd, Pb and As) had stronger negative correlation coefficients with spectral bands 
than the second group (Cu, Zn, Fe and Mn), which first group displaying the 
highest negative spectral correlation at 786 nm in Pb and the second group had the 
strongest correlation at 1667 nm in Zn (Fig. 2). However, correlation coefficients 
changes with Vis-NIR spectra of PrXQpĜRY dumpsite, in contrast to dumpsite 
Pokrok categorized into three groups namely (Mn, As and Fe), (Zn and Cu) and 
(Cd and Pb), but it also displayed the strongest negative correlation in Pb (at 513 
nm) and strongest correlation in Zn (at 769 nm). 
     In Radovesice, the highest positive and also the highest negative spectral 
correlations both can be seen in the first group of elements (Zn, Cu, As and Fe), 
which the strongest positive correlation coefficient related to Zn at 401 nm and Fe 
represented the lowest spectral correlation at 578 nm arising from Fe3+ absorption. 
These results were similar to results of Ben-Dor (2002). They mentioned that the 
contribution of the region 390-550 nm is attributed to the spectral absorption 
features of free iron oxides. %ĜH]QR�GXPSVLWH�DOVR�H[KLELWHG� WKH�KLJKHVW�SRVLWLYH�
and negative correlation coefficients in Vis region, at 401 nm (Zn) and 433 nm 
(Cd), respectively. Correlation coefficients changes of all metals in Merkur 
dumpsite exhibited similar behavior to Vis-NIR spectra and categorized in one 
group. Similar to results of Vohland et al. (2009), the order of the correlation 
coefficients between the metals in this dumpsite was Cd > Zn > As > Pb > Mn > 
Cu > Fe, and the highest positive and negative correlation coefficients belonged to 
Vis Region again (561 nm to 651 nm, respectively). 
     Clearly, correlation changes in the Vis region of the first group of heavy 
metals (Fe, As, Cu and Zn) in Tumerity dumpsite fell into 410-540 nm and 
correlation changes of Cd which categorized in the second group of heavy metals 
(Cd and Pb) fell into the NIR region with the highest negative correlation 
coefficient at 1913 nm (around water absorption band). Stenberg et al. (2010) also 
reported the same results. 
     The earlier report of Song et al. (2012) indicated the similar results in the 
agricultural soils of Changjiang River Delta, China. These findings provide 
support for the use of diffuse reflectance spectra in predicting the heavy metal 
contents of soil samples. 
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Fig.  2. Correlation between reflectance of Vis-NIR and heavy metals in 
different locations 

 
 

Multivariate Analysis Using PLSR and SVMR and Validation Test 
 
     First derivative technique was selected as the most suitable preprocessing 
technique. Multivariate calibration techniques such as PLSR and SVMR have 
been used to extract soil heavy metals calibration models from the reflectance 
spectra of soils in the Vis and NIR. The adequacy of each calibration model was 
evaluated based on the value of R2 and the RPD (Mouazen et al., 2007). In fact, 
R2 indicates the percentage of the variance in the Y variable that is accounted for 
by the X variables. An R2 value between 0.50 and 0.65 indicates that more than 
50% of the variance in Y is accounted for by variable X, so that discrimination 
between high and low concentrations can be made. An R2 between 0.66 and 0.81 
indicates approximate quantitative predictions, whereas, an R2 between 0.82 and 
0.90 reveals good prediction. Calibration models having an R2 above 0.91 are 
considered to be excellent (Williams, 2003). Moreover, RPD is the factor, by 



11 

which the prediction accuracy has been increased compared to using the mean 
composition for all samples (Mouazen et al., 2010). Viscarra Rossel et al. (2006b) 
classified RPD values as follows: RPD 1.0 ޒ indicates very poor model and their 
use is not recommended; RPD between 1.0 and 1.4 indicates poor model where 
only high and low values are distinguishable; RPD between 1.4 and 1.8 indicates 
fair model which may be used for assessment and correlation; RPD values 
between 1.8 and 2.0 indicate good model where quantitative predictions are 
possible; RPD between 2.0 and 2.5 indicates very good, quantitative model and 
RPD > 2.5 indicates excellent predictions. This classification system was adopted 
in this study. 
     As can be seen in Table 2, the two modeling strategies considered in this study 
provide different prediction accuracy of the studied heavy metals. For the PLSR 
calibration set, R2 values ranged between 0.48 and 0.68. Good and excellent 
prediction R2 (R2 > 81 and R2 > 90, respectively) were not obtained for none of 
the seven elements. The best predictive models were obtained for As (R2 = 0.65), 
following by Cd (R2 = 0.60) and inadequate models (R2 < 0.50) were obtained for 
Fe. Furthermore, according to the Viscarra Rossel et al. (2006b) classification, it 
is clear that the prediction of As can be evaluated as good (1.8 ޒ RPD 2.0 ޒ) and 
SUHGLFWLRQ� RI� )H� �����  is not satisfactory, whereas the predictions (1.4 ޒ �RPDޒ
model of Cu, Mn, Cd, Pb and Zn can be introduced as a fair model. The large 
variability of the sample set (colour and texture of samples from different 
dumpsites) used in this study also affects the accuracy of PLSR calibration 
models developed for elements. 
     Malley and Williams (1997) first predicted heavy metals in freshwater 
sediment samples using NIR calibration method, with 119 samples selected as a 
calibration set. They reported very good predictions for Cu (R2 = 0.91, RPD = 
3.35), Pb (R2 = 0.81, RPD = 2.45) and Zn (R2 = 0.93, RPD = 3.80), but the 
prediction for Cd (R2 = 0.63, RPD = 1.74) was less satisfactory. Kemper and 
Sommer (2002) reported excellent prediction for Pb (R2 = 0.94, RPD = 5.89) and 
bad predictions for Cu, Zn, and Cd (R2 = 0.22-0.49). Malley et al. (2004) reported 
acceptable prediction for Cu (R2 = 0.69, RDP = 1.8) in 829 samples from ago-
Manitoba. In the study of Xie et al. (2012), the models provided fairly accurate 
predictions for Fe (R2 > 0.80, RPD > 2.00), less accurate but acceptable for 
screening purposes for Cu, Pb, and Cd (0.50 < R2 < 0.80, 1.40 < RPD < 2.00) and 
poor accuracy for Zn (R2 < 0.50, RPD < 1.40). Due to this variability researchers 
tended to develop calibration models for each field they measured with Vis and 
NIR spectroscopy (Imade Anom et al., 2000; Mouazen et al., 2005). Moreover, 
Dunn et al. (2002) indicated that the poor predictive ability of Vis and NIR for 
many soil constituents might result from a poorly distributed sample set with a 
small range, rather than the inability of Vis and NIR to predict the soil property. 
Besides sample variation, sample distribution and sample size are all critical to a 
successful Vis-NIR calibration (Xie et al., 2012). 
     To the best of our knowledge, the SVMR technique has not yet been 
commonly used to analyse and prediction of heavy metals, in the spectra domain. 
In the current work, SVMR was also used to develope prediction models. The 
results of the SVMR model for Cu, Mn, Fe, Cd, Pb, Zn and AS in Vis-NIR 
spectra are shown in Table 2. Among heavy metals studied, As is the most 
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accurately measured with SVMR (R2 = 0.95, RPD = 2.63). This prediction 
accuracy is classified to be excellent. The calibration results for Mn was not as 
good as the results of the other elements (R2 = 0.65, RPD = 1.75) and indicates a 
fair model. Results obtained with SVMR for Cu, Fe, Cd, Pb and Zn is classified to 
be good or very good, although the prediction accuracy of Fe and Pb is slightly 
lower than those of Cu, Cd and Zn. 
 
Table 2. Statistics results for calibration and cross-validation of the Vis-NIR 
diffuse reflectance spectroscopy for each heavy metal 
  PLSR SVMR 

Item n R2 RMSEP R2
cv RMESPcv RPD R2 RMSEP R2

cv RMESPcv RPD 
Cu 115 0.56 5.89 0.50 6.28 1.45 0.84 3.47 0.78 4.08 2.29 
Mn 264 0.54 102.81 0.44 116.43 1.45 0.65 90.26 0.58 101.25 1.75 
Fe 264 0.48 1616.42 0.48 1619.03 1.32 0.77 1053.89 0.71 1141.08 2.04 
Cd 104 0.60 0.06 0.57 0.11 1.68 0.85 0.03 0.78 0.08 2.31 
Pb 148 0.58 2.58 0.51 3.12 1.50 0.73 1.75 0.66 2.24 1.97 
Zn 115 0.54 17.64 0.45 21.84 1.42 0.80 10.23 0.71 14.51 2.16 
As 104 0.68 2.13 0.61 2.98 1.81 0.95 1.13 0.89 1.89 2.63 

 
     Table 2 indicates that in validation procedure, cross-validation R2 of PLSR 
ranged between 0.44 for Mn and 0.61 for As, while this range for SVMR was 
between 0.58 for Mn to 0.89 again for As. Based on R2

cv and RMESPcv, in both 
calibration and validation, the best estimates were clearly obtained for As 
prediction. Generally, R2

cv and RMESPcv for both methods were satisfactory but 
same as calibration, SVMR results were more reliable which emphasizes the need 
of using more flexible techniques such as SVMR. 
     In total, by comparing the results of the PLSR and SVMR models for the Vis-
NIR spectra, it can be seen that PLSR have been successfully used to calibrate 
many soil variables including some heavy metal concentrations (Xie et al., 2012; 
Song et al., 2012). In this study, in addition to PLSR which showed fairly good 
predictions, SVMR provided very good correlations between soil spectra and 
various heavy metals; better prediction was achieved using SVMR and it 
outperformed the PLSR. From a practical point of view, the prediction accuracies 
obtained with these two methods generally seem to be acceptable for a number of 
agricultural applications including soil science research. Support Vector Machine 
Regression (SVMR)’ superior performance over PLSR can be explained by the 
inclusion of nonlinear and interactions effects as well as linear combinations of 
variables, it is able to approximate nonlinear functions between multidimensional 
spaces (Stevens et al, 2010, Gholizadeh et al., 2013). 
 

CONCLUSION 
 
     This study demonstrated the application of laboratory Vis-NIR reflectance 
spectroscopy for prediction of heavy metals including Cu, Mn, Cd, Zn, Fe, Pb and 
As, using soil samples taken from six brown coal mining dumpsites of Czech 
Republic. For each parameter, Vis-NIR calibration models were created by PLSR 
and SVMR algorithms. Correlation analysis revealed that heavy metals do 
contribute to the reflectance of almost all wavelengths and the correlation 
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coefficients of the two elements Cd and Pb are usually separated from the other 
elements. The results showed obvious differences in predictability and accuracy 
of PLSR and SVMR. Soil spectroscopy in the Vis-NIR region with a SVMR 
model is shown to be a very promising method for the determination of metal 
concentrations in anthropogenic soils. The best predictability of Vis-NIR 
reflectance spectroscopy was obtained by SVMR for As (R2 > 0.90; RPD > 2.5), 
followed by Cd, Cu, Zn, Pb and Mn. Generally, our results confirmed that Vis-
NIR reflectance spectroscopy combined with first derivative and SVMR methods 
have a great potential for site-specific soil monitoring in high-risk regions and 
lead to overoptimistic performance in the assessment of heavy metals, which 
generally involves conducting large numbers of analyses in a short time. For 
future investigations, hyperspectral sensors may be useful and have to be explored 
for fitting specific spectral regions and for models to optimize the estimation of 
heavy metals content. 
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