Application of Semantic Sensor Web in Agriculture

Yu Zhang, Tian'en Chen

Information EngineeringDepartment NERCITA Shuguang Garden Middle Street No.11,Hai Dian,Bei Jing

ABSTRACT

In July 2013, heavy rainstorms across the Midwestern region of the US caused many rivers to breach their banks. Residents of Valley Park, a small town along the Meramec River, Missouri, had to decide whether to rely on a newly constructed levee or abandon their homes for higher ground. Although the levee held, many chose the latter option and fled their homes; it was a chaotic situation that might have been avoided through access to better situational knowledge regarding the current water pressure and the levee's structural integrity. Had pressure sensors been embedded in the levee, they might have provided accurate real-time information that let residents make informed decisions about the safety of the levee, their homes, and themselves. This scenario demonstrates the increasingly critical role of sensors that collect and distribute observations of our world in our everyday lives.

In recent years, sensors have been increasingly adopted by a diverse array of disciplines, such as environmental monitoring for growth of crops ,meteorology for weather forecasting and wildfire detection, civic planning for traffic management, satellite imaging for earth and space observation, medical sciences for patient care using biometric sensors, and homeland security for radiation and biochemical detection at ports. Sensors are thus distributed across the globe, leading to an avalanche of data about our environment. The rapid development and deployment of sensor technology involves many different types of sensors, both remote and in situ, with diverse capabilities such as range, modality, and maneuverability. Today, it's possible to use sensor networks to detect and identify a multitude of observations, from simple phenomena to complex events and situations. The lack of integration and communication between these networks, however, often isolates important data streams and intensifies the existing problem of too much data and not enough knowledge.

With a view to addressing this problem, we discuss a semantic sensor web in which sensor data is annotated with semantic metadata to increase interoperability as well as provide contextual information essential for situational knowledge. In particular, this involves annotating sensor data with spatial, temporal, and thematic semantic metadata.

The semantic sensor web is a framework for providing enhanced meaning for sensor observations so as to enable situation awareness. It enhances meaning by adding semantic annotations to existing standard sensor languages of the SWE. These annotations provide more meaningful descriptions and enhanced access to sensor data than SWE alone, and they act as a linking mechanism to bridge the gap between the primarily syntactic XML-based metadata standards of the SWE and the RDF/OWL-based metadata standards of the semantic web. In association with semantic annotation, ontologies and rules play an important role in semantic sensor web for interoperability, analysis, and reasoning over heterogeneous multimodal sensor data.

In this paper, we mainly discuss the application of semantic sensor web in agriculture. This paper combined agriculture actual characteristic, summarized the research status of semantic sensor web in agriculture and key technologies involved, finally analyzed semantic sensor web application prospect in agriculture. All these would help widen ideas for the application of semantic sensor web in agriculture.

keywords:sensor data,semantic sensor web,swe,ssw

Application of Semantic Sensor Web in Agriculture

OGC Sensor Web Enablement

The sensor Web is a special type of Web-centric information infrastructure for collecting, modeling, storing, retrieving, sharing, manipulating, analyzing, and visualizing information about sensors and sensor observations of phenomena. The OGC, an international consortium of industry, academic, and government organizations tasked with developing open geospatial standards, describes the sensor Web as "Web-accessible sensor networks and archived sensor data that can be discovered and accessed using standard protocols and application program interfaces." The sensor Web has vast significance for applications using sensor technologies to attain actionable situation awareness. Lack of standardization, however, is the primary barrier to realizing a progressive sensor Web.

The OGC recently established Sensor Web Enablement (SWE) to address this aim by developing a suite of specifications related to sensors, sensor data models, and sensor Web services that will enable sensors to be accessible and controllable via the Web. The core suite of language and service interface specifications includes the following:

Observations and Measurements(O&M). These are standard models and XML schema for encoding archived and real-time observations and measurements from a sensor.

Sensor Model Language (SML). These are standard models and XML schema for describing sensors systems and processes; they provide information needed for discovering sensors, locating sensor observations, processing low level sensor observations, and listing taskable properties.

Transducer Model Language (TML). These are standard models and XML schema for describing transducers and supporting real-time streaming of data to and from sensor systems.

Sensor Observation Service (SOS). This is the standard Web service interface for requesting, filtering, and retrieving observations and sensor system information. It's also the intermediary between a client and an observation repository or near real-time sensor channel.

Sensor Planning Service (SPS). This is the standard Web service interface for requesting user-driven acquisitions and observations. It's also intermediary between a client and a sensor collection management environment.

Sensor Alert Service (SAS). This is the standard Web service interface for publishing and subscribing to alerts from sensors.

Web Notification Services (WNS). This is the standard Web service interface for asynchronous delivery of messages or alerts from SAS and SPS Web services and other elements of service workflows.

W3C Semantic Web

The Semantic Web, as envisioned by Tim Berners-Lee and described by the W3C Semantic Web Activity, is an evolving extension of the World Wide Web in which the semantics, or meaning, of information on the Web is formally defined. Formal definitions are captured in ontologies, making it possible for machines to interpret and relate data content more effectively. The principal technologies of the Semantic Web include the Resource Description Framework (RDF) data representation model and the ontology representation languages RDF Schema and Web Ontology Language (OWL).

Semantics of Sensors: Within Space, Time, and Theme

Sensors encoding of observed phenomena are by nature opaque (often in binary or proprietary formats); therefore, metadata play an essential role in managing sensor data. A semantically rich sensor network would provide spatial, temporal, and thematic information essential for discovering and analyzing sensor data. Spatial metadata provide information regarding the sensor location and data, in terms of either a geographical reference system, local reference, or named location (see Figure1). Local reference is especially useful when a sensor is attached to a moving object such as a car or airplane. Although the sensor's location is constantly changing, its location

can be statically determined relative to the moving object. In addition, data from remote sensors, such as video and images from cameras and satellites, require complex spatial

models to represent the field of view being monitored, which is distinct from the sensor's location. Whereas the languages provided by the OGC SWE provide annotations for simple spatial and temporal concepts such as spatial coordinate and time stamp, more abstract concepts, such as spatial region, temporal interval, or any domain-specific thematic entity, would benefit from an ontological representation's expressiveness. Consider, for example, the semantics of a query about weather information at a particular time and place. The type of weather condition being sought could be a simple phenomenon, such as a single temperature reading, or a complex one, such as a tsunami. The location type within the query could be a single coordinate location, a spatial region within a bounding-box, or a named location such as a park or school. The semantics of the time interval specified by the query could be about weather conditions that fall within the time interval, contain the time interval, or overlap with the time interval. The type of metadata necessary to answer the queries listed requires knowledge of the situation the sensors observe. Such knowledge can be represented in ontologies and used to annotate and reason over sensor data to answer complex queries. Next, let's look at the SSW and how it integrates the semantic metadata within the sensors domain.

Semantic Sensor Web

The SSW is a framework for providing enhanced meaning for sensor observations so as to enable situation awareness. It enhances meaning by adding

semantic annotations to existing standard sensor languages of the SWE. These annotations provide more meaningful descriptions and enhanced access to sensor data than SWE alone, and they act as a linking mechanism to bridge the gap between the primarily syntactic XML-based metadata standards of the SWE and the RDF/OWL-based metadata standards of the Semantic Web. In association with semantic annotation, ontologies and rules play an important role in SSW for interoperability, analysis, and reasoning over heterogeneous multimodal sensor data.

Semantic Annotation

Many languages can be used for annotating sensor data, such as RDFa, XLink, and SAWSDL (Semantic Annotations for WSDL and XML Schema). Here, we describe the use of RDFa, a W3C proposed standard and a markup language that enables the layering of RDF information on any XHTML or XML document. RDFa provides a set of attributes that can represent semantic metadata within an XML language from which we can extract RDF triples using a simple mapping. The following example shows a timestamp encoded in O&M and semantically annotated with RDFa. The timestamp's semantic annotation describes an instance of time:

Instant (here, time is the namespace for an OWL-Time ontology):

Figure 1 an OWL-Time ontology

This example generates two RDF triples. The first, time_1 rdf:type time:Instant, describes time_1 as an instance of time:Instant (subject istime_1, predicate is rdf:type, object istime:Instant). The second, time_1 xs:date-time "2008-03-08T05:00:00," describes a data-type property of time_1 specifying the time as a literal value (subject is time_1, predicate is xs:date-time, object is "2008-03-08T05:00:00"). This example illustrates the simple mechanics of embedding semantics in an XML document using RDFa. Semantically annotating SWE languages enables software applications to "understand" and reason over sensor data consistently, coherently, and accurately.

Ontologies

An ontology is a formal representation of a domain, composed of concepts and named relationships. At a broad level, we can classify ontologies along the three types of semantics associated with sensor data— spatial, temporal, and

thematic— in addition to ontological models representing the sensor domain. Several ongoing initiatives are helping to build relevant ontologies within various communities, such as the US National Institute of Standards and Technology, the W3C, and the OGC. NIST has initiated a project titled "Sensor Standards Harmonization" to develop a common sensor ontology based on the existing standards within the sensor domain, including IEEE 1451, ANSI N42.42, the Chemical, Biological, Radiological, and Nuclear (CBRN) Data Model, and the OGC SWE languages. Several efforts are also underway to design an expressive geospatial ontology, including the W3C Geospatial Incubator Group and the Geographic Markup Language Ontology of the OGC. OWLTime.a W3C-recommended ontology based on temporal calculus, provides descriptions of temporal concepts such as instant and interval, which supports defining interval queries such as within, contains, and overlaps. Domain-specific ontologies that model various sensor-related fields such as weather and oceanography are also necessary to provide semantic descriptions of thematic entities. We envision a registry of domain-specific ontologies for the SSW, similar to the Open Biomedical Ontologies at the National Center for Biomedical Ontologies.

Figure 2 shows a subset of concepts and their relations from a suite of ontologies in SSW, modeling the weather domain.

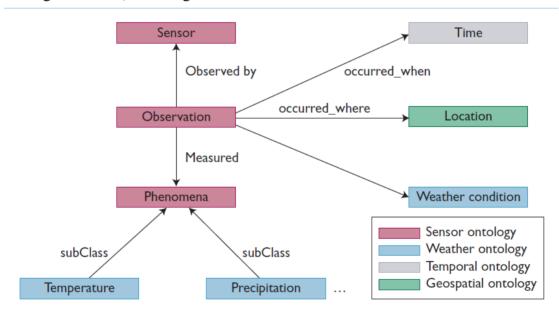


Figure 2 weather domain

Rule-Based Reasoning

To derive additional knowledge from semantically annotated sensor data, it's necessary to define and use rules. Rule languages and rule processing systems are evolving. To demonstrate rules application and rule-based reasoning, we currently use Semantic Web Rule Language (SRWL)-based rules defined over OWL ontologies to deduce new ontological assertions from known instances. The W3C has proposed SWRL as a standard rule language in the Semantic Web; it's based

on OWL and uses the antecedent→ consequent structure to define rules. Its primary advantage is that it seamlessly incorporates rules into an OWL ontology schema while providing enhanced application-specific expressivity.

The following sketch provides an example of rule usage in SSW: if a group of sensors explicitly provides information regarding temperature and precipitation, then, using these rules, we can specify possible road conditions. The following rule states that if the temperature is less than 32 degrees Fahrenheit and it's raining, then the roads are potentially icy.

```
Rule: Potentially Icy (with freezing temperature and rain)
Observation(?obs) &
measured(?obs, ?precip) &
Rain(?precip) &
measured(?obs, ?temp) &
Temperature(?temp) &
temperature_value(?temp,
?tval) &
lessThanOrEqual(?tval, 32) &
unit_of_measurement(?temp,
```

Figure 3

SSW Application

As a proof of concept, we've implemented two prototype applications. The first involves YouTube videos encoded in SensorML and semantically annotated with concepts from an OWL-Time ontology.5 All videos in the prototype originate from Ohio State Patrol in-dash cameras that contain temporal information within the video frames. The temporal metadata is extracted using an open source optical character recognition (OCR) engine called Tesseract. Using this semantic metadata, we can retrieve videos by using semantic temporal concepts such as within, contains, or overlaps when querying with an interval of time. We can position the videos retrieved from a query onto a Google Map and play them from within an information window. Figure 3 shows a screenshot of the interface for this SSW prototype application. The second prototype is an SOS, as specified by the SWE, which uses the SSW framework to enable complex queries over weather data. We refer to this type of service as a Semantic Sensor Observation Service(S-SOS). As described earlier, SOS is a service for requesting, filtering, and retrieving observations and sensor system information. SOS acts as an intermediary between a client and an observation repository real-time sensor channel. Our application implements an SOS weather service that uses weather readings available at BuckeyeTraffic.org, a Web site maintained by the Ohio Department of Transportation. Buckeye Traffic provides road and weather

observations from more than 200 sensors deployed along Ohio interstate highways. Our application collects and uses data including temperatures of the air, surface, subsurface, and dew point, as well as wind speed, wind direction, and precipitation. We collected and stored such data for one month at 10-secondreading intervals. We then converted the data to O&M and SML representation formats and semantically annotated these documents with spatial, temporal, and weather ontological concepts. By leveraging SSW semantic annotations, we can fluently execute complex queries over simple weather readings. For example, let's revisit the example query from the previous section asking for weather information at a particular time and place. More specifically, suppose the query requests information about freezing or blizzard conditions. The freezing query requires only a temperature sensor and a rule specifying that any temperature less than 32 degrees Fahrenheit constitutes a freezing condition. The blizzard query, on the other hand, requires three sensor types — temperature, wind, and precipitation. In fact, we can describe the blizzard condition as a composition of several simple(single sensor) conditions including the freezing condition, high-winds condition, and snowing condition. Complex queries of this type require the situational awareness enabled by semantic annotation and reasoning over sensor data.

```
Rule: Blizzard Condition (with freezing temperature, high winds, and snow)
Observation(?obs) &
described(?obs, ?weather) &
FreezingCondition(?weather) &
HighWindCondition(?weather) &
SnowCondition(?weather) &
→BlizzardCondition(?weather)
```

Figure 4

By incorporating OGC and W3C standardization efforts into a SSW, we can provide an environment for enhanced query and reasoning within the sensor domain.

We see great potential for the SSW in many different domains, including weather forecasting, oceanography, biometrics, video on the Web, and Event Web. All these would help widen ideas for the application of semantic sensor web in agriculture.

REFERENCES

- [1] J. Salter, "Heavy Rains Close Missouri Roads, Renew Flood Concerns," USA Today, 10 Apr. 2008; www.usatoday.com/weather/storms/2008-04-10-missour i-flooding N.htm.
- [2] Neil Gross, "The Earth Will Don an Electronic Skin," BusinessWeek, Aug. 1999; www.businessweek.com/1999/99 35/b3644024.htm.
- [3] Mike Botts et al., "OGC Sensor Web Enablement:Overview and High Level Architecture (OGC 07-165)," Open Geospatial Consortium white paper, 28 Dec. 2007.
- [4] A. Sheth and M. Perry, "Traveling the Semantic Web through Space, Time, and Theme," IEEE Internet Computing, vol.12, no. 2, 2008, pp. 81 86.
- [5] C. Henson et al., "Video on the SemanticSensor Web," W3C Video on the WebWorkshop, 2007; www.w3.org/2007/08/video/papers.html.
- [6] J. Ramesh, "EventWeb: Developing a Human-Centered Computing System," Computer, vol. 41, no. 2, 2008, pp. 42 50.
- [7] Olston C,Reed B,Sirvastava U,Kumar R,Tomkins A.pig Latin:A not-so-foreign language for data processing.In:proc. Of the SIGMOD.2008.1099-1110.
- [8]Chen T,Xiao N,Liu F,Fu CS.Clustering-based and consistent hashing-aware data placement algorithm.Journal of software,2010,21(12):3175-3185
- [9]Patten S,The S3 Sookbook:get cooking with Amazon's Simple Storage Service.Sopobo,2009
- [10]Murty J,Programming Amazon Web Service:S3,EC2,SQS,FPS,and SimpleDB.O'Reilly,2008